Extending Grammatical Evolution with Attribute Grammars: An Application to Knapsack Problems

Research extending the capabilities of the well-known evolutionary-algorithm (EA) of Grammatical Evolution (GE) is presented. GE essentially describes a software component for (potentially) any search algorithm (more prominently an EA) whereby it serves to facilitate the generation of viable solutions to the problem at hand. In this way, GE can be thought of as a generallyapplicable, robust and pluggable component to any search-algorithm. Facilitating this plug-ability is the ability to hand-describe the structure of solutions to a particular problem; this, under the guise of the concise and effective notation of a grammar definition. This grammar may be thought of, as the rules for the generation of solutions to a problem. Recent research has shown, that for static-problems (problems who’s optimum-solution resides within a finitely-describable set, for the set of allpossible solutions), the ability to focus the search (for the optimum) on the more promising regions of this set, has provided the best-performing approaches to-date. As such, it is suggested that search be biased toward more promising areas of the set of all possible solutions. In it’s use of a grammar, GE provides such a bias (as a language-bias), yet remains unable, to effectively bias the search for problems of constrainedoptimisation. As such, and as detailed in this thesis the mechanism of an attribute grammar is proposed to maintain GE as a pluggable component

[1]  James R. Levenick Inserting Introns Improves Genetic Algorithm Success Rate: Taking a Cue from Biology , 1991, ICGA.

[2]  Robert H. Storer,et al.  Local Search in Problem and Heuristic Space for Job Shop Scheduling Genetic Algorithms , 1992 .

[3]  Kenneth Slonneger,et al.  Formal syntax and semantics of programming languages - a laboratory based approach , 1995 .

[4]  G. Dantzig Discrete-Variable Extremum Problems , 1957 .

[5]  Riccardo Poli,et al.  Foundations of Genetic Programming , 1999, Springer Berlin Heidelberg.

[6]  Arnaud Fréville,et al.  An Efficient Preprocessing Procedure for the Multidimensional 0- 1 Knapsack Problem , 1994, Discret. Appl. Math..

[7]  Riccardo Poli,et al.  On the Search Properties of Different Crossover Operators in Genetic Programming , 2001 .

[8]  John E. Beasley,et al.  A Genetic Algorithm for the Multidimensional Knapsack Problem , 1998, J. Heuristics.

[9]  J. K. Kinnear,et al.  Advances in Genetic Programming , 1994 .

[10]  Michael O'Neill,et al.  An Attribute Grammar Decoder for the 01 MultiConstrained Knapsack Problem , 2005, EvoCOP.

[11]  Günther R. Raidl,et al.  On the Importance of Phenotypic Duplicate Elimination in Decoder-Based Evolutionary Algorithms , 2002 .

[12]  Luc De Raedt,et al.  Inductive Logic Programming: Theory and Methods , 1994, J. Log. Program..

[13]  John J. Grefenstette,et al.  Genetic Algorithms for the Traveling Salesman Problem , 1985, ICGA.

[14]  Wolfgang BanzhafLS Compression of Eeective Size in Genetic Programming , 1999 .

[15]  G. Raidl,et al.  An improved genetic algorithm for the multiconstrained 0-1 knapsack problem , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[16]  Thomas Bäck,et al.  The zero/one multiple knapsack problem and genetic algorithms , 1994, SAC '94.

[17]  Nguyen Xuan Hoai,et al.  Some Experimental Results with Tree Adjunct Grammar Guided Genetic Programming , 2002, EuroGP.

[18]  Jens Gottlieb,et al.  Permutation-based evolutionary algorithms for multidimensional knapsack problems , 2000, SAC '00.

[19]  Noam Chomsky,et al.  Three models for the description of language , 1956, IRE Trans. Inf. Theory.

[20]  David J. Montana,et al.  Strongly Typed Genetic Programming , 1995, Evolutionary Computation.

[21]  S. Martello,et al.  Algorithms for Knapsack Problems , 1987 .

[22]  Z. Michalewicz,et al.  Genocop III: a co-evolutionary algorithm for numerical optimization problems with nonlinear constraints , 1995, Proceedings of 1995 IEEE International Conference on Evolutionary Computation.

[23]  John R. Koza,et al.  Genetic programming 2 - automatic discovery of reusable programs , 1994, Complex Adaptive Systems.

[24]  Gunar E. Liepins,et al.  Some Guidelines for Genetic Algorithms with Penalty Functions , 1989, ICGA.

[25]  Noam Chomsky,et al.  On Certain Formal Properties of Grammars , 1959, Inf. Control..

[26]  Matthew J. Streeter,et al.  The Root Causes of Code Growth in Genetic Programming , 2003, EuroGP.

[27]  Hussein A. Abbass,et al.  Tree Adjoining Grammars, Language Bias, and Genetic Programming , 2003, EuroGP.

[28]  John McCarthy,et al.  Recursive functions of symbolic expressions and their computation by machine, Part I , 1959, Commun. ACM.

[29]  G. Raidl Weight-codings in a genetic algorithm for the multi-constraint knapsack problem , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[30]  Peter A. Whigham Inductive bias and genetic programming , 1995 .

[31]  Michael M. Skolnick,et al.  Using Genetic Algorithms in Engineering Design Optimization with Non-Linear Constraints , 1993, ICGA.

[32]  Lawrence Davis,et al.  Shall We Repair? Genetic AlgorithmsCombinatorial Optimizationand Feasibility Constraints , 1993, ICGA.

[33]  Donald E. Knuth,et al.  Semantics of context-free languages , 1968, Mathematical systems theory.

[34]  Carlos Cotta,et al.  A Hybrid Genetic Algorithm for the 0-1 Multiple Knapsack Problem , 1997, ICANNGA.

[35]  Graham Kendall,et al.  Diversity in genetic programming: an analysis of measures and correlation with fitness , 2004, IEEE Transactions on Evolutionary Computation.

[36]  Michael O’Neill,et al.  Solving Knapsack Problems with Attribute Grammars , 2004 .

[37]  Charles N. Fischer,et al.  Crafting a Compiler with C , 1991 .

[38]  R. Storer,et al.  New search spaces for sequencing problems with application to job shop scheduling , 1992 .

[39]  Peter Nordin,et al.  Genetic programming - An Introduction: On the Automatic Evolution of Computer Programs and Its Applications , 1998 .

[40]  C. Darwin On the Origin of Species by Means of Natural Selection: Or, The Preservation of Favoured Races in the Struggle for Life , 2019 .

[41]  Conor Ryan,et al.  Grammatical Evolution , 2001, Genetic Programming Series.

[42]  Conor Ryan,et al.  Ripple Crossover in Genetic Programming , 2001, EuroGP.

[43]  Herbert Spencer,et al.  The Principles of Biology , 1863, The British and Foreign Medico-Chirurgical Review.

[44]  Jens Gottlieb,et al.  On the Effectivity of Evolutionary Algorithms for the Multidimensional Knapsack Problem , 1999, Artificial Evolution.

[45]  R. Storer,et al.  A problem space algorithm for single machine weighted tardiness problems , 2003 .

[46]  Peter J. Bentley,et al.  Methods to Evolve Legal Phenotypes , 1998, PPSN.

[47]  P. Nordin,et al.  Explicitly defined introns and destructive crossover in genetic programming , 1996 .

[48]  Mike Livesey,et al.  Evolving caching algorithms in C by genetic programming , 1997 .

[49]  Anthony Brabazon,et al.  pi-Grammatical Evolution , 2004, GECCO.

[50]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[51]  Anne L. Olsen Penalty functions and the knapsack problem , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[52]  Edmund M. A. Ronald,et al.  When Selection Meets Seduction , 1995, ICGA.

[53]  W. Banzhaf,et al.  Genetic programming using genotype-phenotype mapping from linear genomes into linear phenotypes , 1996 .

[54]  Friedrich L. Bauer,et al.  Revised report on the algorithm language ALGOL 60 , 1963, CACM.

[55]  R. Hinterding Representation, constraint satisfaction and the knapsack problem , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[56]  Andreas Geyer-Schulz,et al.  Fuzzy Rule-Based Expert Systems and Genetic Machine Learning , 1996 .

[57]  Eckart Zitzler,et al.  Evolutionary algorithms for multiobjective optimization: methods and applications , 1999 .

[58]  Norman R. Paterson,et al.  Genetic programming with context-sensitive grammars , 2003 .

[59]  Andreas Geyer-Schulz,et al.  Genetic Programming over Context-Free Languages with Linear Constraints for the Knapsack Problem: First Results , 2002, Evolutionary Computation.

[60]  Günther R. Raidl,et al.  The Effects of Locality on the Dynamics of Decoder-Based Evolutionary Search , 2000, GECCO.

[61]  Peter Nordin,et al.  Introns in Nature and in Simulated Structure Evolution , 1997, BCEC.

[62]  N. Takahata Neutral theory of molecular evolution. , 1996, Current opinion in genetics & development.

[63]  Michael O'Neill,et al.  Grammatical evolution - evolutionary automatic programming in an arbitrary language , 2003, Genetic programming.

[64]  Dan Boneh,et al.  On genetic algorithms , 1995, COLT '95.

[65]  Maarten Keijzer,et al.  Crossover in Grammatical Evolution , 2003, Genetic Programming and Evolvable Machines.

[66]  John R. Koza,et al.  Hierarchical Genetic Algorithms Operating on Populations of Computer Programs , 1989, IJCAI.

[67]  Man Leung Wong,et al.  Evolutionary Program Induction Directed by Logic Grammars , 1997, Evolutionary Computation.

[68]  Michael O'Neill,et al.  Under the hood of grammatical evolution , 1999 .

[69]  Jean-Yves Potvin,et al.  Genetic Algorithms for the Traveling Salesman Problem , 2005 .

[70]  Günther R. Raidl A weight-coded genetic algorithm for the multiple container packing problem , 1999, SAC '99.

[71]  Peter A. Whigham,et al.  Search bias, language bias and genetic programming , 1996 .

[72]  John E. Beasley,et al.  OR-Library: Distributing Test Problems by Electronic Mail , 1990 .

[73]  Z. Michalewicz,et al.  Your brains and my beauty: parent matching for constrained optimisation , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[74]  Hasan Pirkul,et al.  A heuristic solution procedure for the multiconstraint zero‐one knapsack problem , 1987 .

[75]  Alfred V. Aho,et al.  Compilers: Principles, Techniques, and Tools , 1986, Addison-Wesley series in computer science / World student series edition.

[76]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[77]  Annie S. Wu,et al.  Genome Length as an Evolutionary Self-adaptation , 1998, PPSN.

[78]  Osman Oguz,et al.  A heuristic algorithm for the multidimensional zero-one knapsack problem , 1984 .

[79]  L. Darrell Whitley,et al.  Lamarckian Evolution, The Baldwin Effect and Function Optimization , 1994, PPSN.

[80]  Jens Gottlieb Evolutionary Algorithms for Multidimensional Knapsack Problems: the Relevance of the Boundary f the Feasible Region , 1999, GECCO.

[81]  Günther R. Raidl,et al.  Characterizing Locality in Decoder-Based EAs for the Multidimensional Knapsack Problem , 1999, Artificial Evolution.

[82]  Robert W. Sebesta,et al.  Programming Language Processors in Java: Compilers and Interpreters: AND Concepts of Programming Languages , 2000 .

[83]  Zbigniew Michalewicz,et al.  A Survey of Constraint Handling Techniques in Evolutionary Computation Methods , 1995 .