Flo11p, drug efflux pumps, and the extracellular matrix cooperate to form biofilm yeast colonies

Biofilm yeast colonies are complex structures that form through cooperative action of constituent cells and provide a protective environment for cell growth.

[1]  L. Váchová,et al.  Role of distinct dimorphic transitions in territory colonizing and formation of yeast colony architecture. , 2010, Environmental microbiology.

[2]  R. D. Gietz,et al.  Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. , 2002, Methods in enzymology.

[3]  Zdena Palková,et al.  Multicellular microorganisms: laboratory versus nature , 2004, EMBO reports.

[4]  K. Kuchler,et al.  The yeast ATP binding cassette (ABC) protein genes PDR10 and PDR15 are novel targets for the Pdr1 and Pdr3 transcriptional regulators , 1997, FEBS letters.

[5]  P. Lipke,et al.  A Biochemical Guide to Yeast Adhesins: Glycoproteins for Social and Antisocial Occasions , 2007, Microbiology and Molecular Biology Reviews.

[6]  A. Botha,et al.  Microbial Exopolymers Link Predator and Prey in a Model Yeast Biofilm System , 2006, Microbial Ecology.

[7]  Frédéric Devaux,et al.  Domestication of wild Saccharomyces cerevisiae is accompanied by changes in gene expression and colony morphology , 2003, Molecular microbiology.

[8]  A. Goffeau,et al.  The multidrug resistance gene PDR1 from Saccharomyces cerevisiae. , 1987, The Journal of biological chemistry.

[9]  A. Dranginis,et al.  Expression and Characterization of the Flocculin Flo11/Muc1, a Saccharomyces cerevisiae Mannoprotein with Homotypic Properties of Adhesion , 2007, Eukaryotic Cell.

[10]  J. Costerton,et al.  Biofilms: Survival Mechanisms of Clinically Relevant Microorganisms , 2002, Clinical Microbiology Reviews.

[11]  Gaëlle Lelandais,et al.  The Central Role of PDR1 in the Foundation of Yeast Drug Resistance* , 2007, Journal of Biological Chemistry.

[12]  J. Hegemann,et al.  A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast. , 2002, Nucleic acids research.

[13]  A. Beauvais,et al.  Characterization of a biofilm-like extracellular matrix in FLO1-expressing Saccharomyces cerevisiae cells. , 2009, FEMS yeast research.

[14]  L. Hartwell,et al.  Genetic control of the cell division cycle in yeast. , 1974, Science.

[15]  M. Tokunaga,et al.  Ultrastructure of outermost layer of cell wall in Candida albicans observed by rapid-freezing technique. , 1986, Journal of electron microscopy.

[16]  F. Gorelick,et al.  Pancreas Cell Physiology and Pancreatitis Cell Biology , 2003, Pancreatology.

[17]  B. Wickes,et al.  Investigation of multidrug efflux pumps in relation to fluconazole resistance in Candida albicans biofilms. , 2002, The Journal of antimicrobial chemotherapy.

[18]  I. S. Pretorius,et al.  Muc1, a mucin-like protein that is regulated by Mss10, is critical for pseudohyphal differentiation in yeast. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[19]  S. Fowler,et al.  Spectrofluorometric studies of the lipid probe, nile red. , 1985, Journal of lipid research.

[20]  L. Hartwell Genetic control of the cell division cycle in yeast. IV. Genes controlling bud emergence and cytokinesis. , 1971, Experimental cell research.

[21]  J. Mccusker,et al.  Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae , 1999, Yeast.

[22]  K. Thorn,et al.  Optimized cassettes for fluorescent protein tagging in Saccharomyces cerevisiae , 2004, Yeast.

[23]  A. Goffeau,et al.  The pleitropic drug ABC transporters from Saccharomyces cerevisiae. , 2001, Journal of molecular microbiology and biotechnology.

[24]  C. J. Roberts,et al.  Different subcellular localization of Saccharomyces cerevisiae HMG-CoA reductase isozymes at elevated levels corresponds to distinct endoplasmic reticulum membrane proliferations. , 1996, Molecular biology of the cell.

[25]  S. Zara,et al.  FLO11 gene length and transcriptional level affect biofilm-forming ability of wild flor strains of Saccharomyces cerevisiae. , 2009, Microbiology.

[26]  G. Fink,et al.  Origins of variation in the fungal cell surface , 2004, Nature Reviews Microbiology.

[27]  L. Kubínová,et al.  Architecture of developing multicellular yeast colony: spatio-temporal expression of Ato1p ammonium exporter. , 2009, Environmental microbiology.

[28]  L. J. Douglas,et al.  Candida biofilms and their role in infection. , 2003, Trends in microbiology.

[29]  H. Jungwirth,et al.  Yeast ABC transporters – A tale of sex, stress, drugs and aging , 2006, FEBS letters.

[30]  F. Klis,et al.  Covalently linked cell wall proteins of Candida albicans and their role in fitness and virulence. , 2009, FEMS yeast research.

[31]  A. Decho Microbial biofilms in intertidal systems: an overview , 2000 .

[32]  A. Mitchell,et al.  Complementary Adhesin Function in C. albicans Biofilm Formation , 2008, Current Biology.

[33]  Gerald R. Fink,et al.  Unipolar cell divisions in the yeast S. cerevisiae lead to filamentous growth: Regulation by starvation and RAS , 1992, Cell.

[34]  M. Hayakawa,et al.  FLO11 is essential for flor formation caused by the C-terminal deletion of NRG1 in Saccharomyces cerevisiae. , 2004, FEMS microbiology letters.

[35]  R. Wright Transmission electron microscopy of yeast , 2000, Microscopy research and technique.

[36]  K. Foster,et al.  FLO1 Is a Variable Green Beard Gene that Drives Biofilm-like Cooperation in Budding Yeast , 2008, Cell.

[37]  J. Lopez-Ribot,et al.  Design of a Simple Model of Candida albicans Biofilms Formed under Conditions of Flow: Development, Architecture, and Drug Resistance , 2009, Mycopathologia.

[38]  Michael Knop,et al.  A versatile toolbox for PCR‐based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes , 2004, Yeast.

[39]  M. Ghannoum,et al.  Mechanism of Fluconazole Resistance in Candida albicans Biofilms: Phase-Specific Role of Efflux Pumps and Membrane Sterols , 2003, Infection and Immunity.

[40]  L. Váchová,et al.  General factors important for the formation of structured biofilm-like yeast colonies. , 2010, Fungal genetics and biology : FG & B.

[41]  G. Fink,et al.  A Saccharomyces gene family involved in invasive growth, cell-cell adhesion, and mating. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[42]  I. S. Pretorius,et al.  Characteristics of Flo11-dependent flocculation in Saccharomyces cerevisiae. , 2005, FEMS yeast research.

[43]  H. Sanchez,et al.  Genetic basis of Candida biofilm resistance due to drug-sequestering matrix glucan. , 2010, The Journal of infectious diseases.

[44]  G. Baillie,et al.  Matrix polymers of Candida biofilms and their possible role in biofilm resistance to antifungal agents. , 2000, The Journal of antimicrobial chemotherapy.

[45]  P. Lipke,et al.  Yeast Cell Adhesion Molecules Have Functional Amyloid-Forming Sequences , 2009, Eukaryotic Cell.

[46]  J. Servos,et al.  Gene SNQ2 of Saccharomyces cerevislae, which confers resistance to 4-nitroquinoline-N-oxide and other chemicals, encodes a 169 kDa protein homologous to ATP-dependent permeases , 2004, Molecular and General Genetics MGG.

[47]  K. Kuchler,et al.  Fungal ATP-binding cassette (ABC) transporters in drug resistance & detoxification. , 2006, Current drug targets.

[48]  A. Mitchell,et al.  How to build a biofilm: a fungal perspective. , 2006, Current opinion in microbiology.

[49]  A. Goffeau,et al.  PDR5, a novel yeast multidrug resistance conferring transporter controlled by the transcription regulator PDR1. , 1994, The Journal of biological chemistry.

[50]  G. Fink,et al.  Bakers' yeast, a model for fungal biofilm formation. , 2001, Science.

[51]  D. Allison,et al.  The Biofilm Matrix , 2003, Biofouling.

[52]  L. J. Douglas,et al.  Biofilm matrix of Candida albicans and Candida tropicalis: chemical composition and role in drug resistance. , 2006, Journal of medical microbiology.