Ultrabroadband infrared solid-state lasers

Ultrabroadband infrared transition metal ion-doped solid-state lasers have come of age and are increasingly being used in trace gas monitoring, remote sensing, telecommunications, ophthalmology, and neurosurgery. Operating at room temperature, they are stable, versatile, and easy to handle successors to the color center lasers. They are becoming the critical components in optical frequency standards, space-based remote sensing systems, and may soon find application in femtochemistry and attosecond science. The article reviews the principles and basic physics of these types of lasers, which are distinguished by their ability to support the shortest pulses down to single optical cycle durations and the ultimately broad tuning ranges. The paper further reviews the state of the art in the existing diode-pumped sources of broadly tunable continuous wave, and ultrashort pulsed radiation in the infrared, and provides examples of their successful application to supercontinuum generation, trace gas measurements, and ultrasensitive intracavity spectroscopy. Developments in such lasers as Cr:YAG, Cr:ZnSe, Cr:ZnS, as well as the recently proposed mixed Cr:ZnS/sub x/Se/sub 1-x/ laser, are discussed in more detail. These lasers nearly continuously cover the infrared spectral region between 1.3 and 3.1 /spl mu/m. The gain spectra of these lasers perfectly match and extend toward the infrared spectra of such established ultrabroadband lasers, operating at shorter wavelengths between /spl sim/0.7-1.3 /spl mu/m, as Ti:sapphire, Cr:LiSAF/Cr:LiSGaF and Cr:forsterite. This opens up new opportunities for synthesis of single-cycle optical pulses and frequency combs in the infrared.

[1]  J. Taylor,et al.  All-solid-state femtosecond sources in the near infrared , 1997 .

[2]  M. Nishimura,et al.  Silica-based functional fibers with enhanced nonlinearity and their applications , 1999 .

[3]  G. Grebe,et al.  IR-luminescence of ZnS:Cr , 1970 .

[4]  J. Schuman,et al.  Optical coherence tomography. , 2000, Science.

[5]  R. Alfano,et al.  Room-temperature near-infrared tunable laser operation of Cr(4+):Ca(2)GeO(4). , 1996, Optics letters.

[6]  L. Johnson,et al.  Phonon-terminated laser emission from Ni(2+) ions in KMgF(3). , 1983, Optics letters.

[7]  T A Birks,et al.  Long-wavelength continuum generation about the second dispersion zero of a tapered fiber. , 2002, Optics letters.

[8]  S B Mirov,et al.  Erbium fiber laser-pumped continuous-wave microchip Cr(2+):ZnS and Cr(2+):ZnSe lasers. , 2002, Optics letters.

[9]  F. Wise,et al.  Femtosecond diode-pumped Cr:LiSGAF lasers , 1996 .

[10]  T. Ninomiya,et al.  Continuous-wave operation up to 36/spl deg/C of 1.3-μm GaInAsP-InP vertical-cavity surface-emitting lasers , 1997, IEEE Photonics Technology Letters.

[11]  S. W. Kutcher,et al.  Mid‐Infrared Lasing from a Novel Optical Material: Chromium–Doped Cd0.55Mn0.45Te , 1999 .

[12]  M. Mond,et al.  Efficient laser operation and continuous-wave diode pumping of Cr2+:ZnSe single crystals , 2001 .

[13]  H. Petek,et al.  Femtosecond Cr(4+):YAG laser with an L-fold cavity operating at a 1.2-GHz repetition rate. , 2000, Optics letters.

[14]  Ralph H. Page,et al.  Efficient broadly tunable continuous-wave Cr 2+ :ZnSe laser , 2001 .

[15]  E. Sorokin,et al.  Directly diode-pumped Kerr-lens mode-locked Cr4+:YAG laser. , 2004, Optics letters.

[16]  J. Haus,et al.  Mode-locked Cr4+:YAG laser: model and experiment , 1997 .

[17]  J. Taylor,et al.  Diode-pumped Cr:LiSAF all-solid-state femtosecond oscillator and regenerative amplifier. , 1995, Optics letters.

[18]  Markus W. Sigrist,et al.  Mid-IR Difference Frequency Generation , 2003 .

[19]  K Bergman,et al.  Saturable Bragg reflector self-starting passive mode locking of a Cr(4+):YAG laser pumped with a diode-pumped Nd:YVO(4) laser. , 1996, Optics letters.

[20]  A. Sennaroglu,et al.  Continuous-wave power performance of a 2.47-/spl mu/m Cr/sup 2+/:ZnSe laser: experiment and modeling , 2000, IEEE Journal of Quantum Electronics.

[21]  S. Gayen,et al.  Near infrared tunable operation of chromium doped forsterite laser. , 1989, Applied optics.

[22]  G. A. Slack,et al.  Near and far infrared absorption in Cr doped ZnSe , 1969 .

[23]  V. A. Akimov,et al.  Intracavity laser spectroscopy using a Cr2+ : ZnSe laser , 2004 .

[24]  Timothy J. Carrig,et al.  Mode locked and Q-switched Cr:ZnSe laser using a Semiconductor Saturable Absorbing Mirror (SESAM) , 2005 .

[25]  K. Bergman,et al.  True fundamental solitonsin a passively mode-locked short-cavity Cr4+YAG laser , 1997 .

[26]  Mauro Tonelli,et al.  A new broadly tunable room-temperature continuous-wave Cr 2+ :ZnS x Se 1-x laser , 2005 .

[27]  E. Wintner,et al.  Sub-20 fs pulse generation from the mirror dispersion controlled Cr:LiSGaF and Cr:LiSAF lasers , 1997 .

[28]  G. Huber,et al.  Tunable room-temperature cw laser action in Cr3+: GdScGa-Garnet , 1983 .

[29]  Tasoltan T. Basiev,et al.  Crystalline and Fiber Raman Lasers , 2003 .

[30]  F. Krausz,et al.  Kerr lens mode locking. , 1992, Optics letters.

[31]  Ralph H. Page,et al.  Cr/sup 2+/-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers , 1997 .

[32]  G. Tempea,et al.  Self-starting five optical cycle pulse generation in Cr4+:YAG laser , 2003 .

[33]  Irina T. Sorokina,et al.  Cr2+-doped II–VI materials for lasers and nonlinear optics , 2004 .

[34]  K. Schepler,et al.  Extended mid-IR tuning of a Cr2+:CdSe laser , 2002 .

[35]  Yehoshua Kalisky,et al.  Cr4+-doped crystals: their use as lasers and passive Q-switches , 2004 .

[36]  U. Keller,et al.  Self-starting soliton-modelocked femtosecond Cr(4+):YAG laser using an antiresonant Fabry–Pérot saturable absorber , 1997 .

[37]  R. Stoneman,et al.  Efficient, broadly tunable, laser-pumped Tm:YAG and Tm:YSGG cw lasers. , 1990, Optics letters.

[38]  S. Trivedi,et al.  Slope efficiency and tunability of a Cr2+: Cd0.85Mn0.15Te mid-infrared laser , 1998 .

[39]  U. Hömmerich,et al.  Observation of lasing from Cr2+:CdTe and compositional effects in Cr2+-doped II-VI semiconductors , 2002 .

[40]  R. Beach,et al.  Demonstrations of diode-pumped and grating-tuned ZnSe:Cr{sup 2+} lasers. Revision 1 , 1997 .

[41]  M. Tonelli,et al.  Mode-locked ceramic Cr2+ :ZnSe laser , 2003 .

[42]  A. Alcock,et al.  Broadly tunable continuous-wave diode-pumped Cr4+:YAG laser , 2003 .

[43]  Evgeni Sorokin,et al.  Spectral properties of the Kerr-lens mode-locked Cr 4+ :YAG laser , 2003 .

[44]  Leon Esterowitz,et al.  Efficient 1.94-μm Tm:YALO laser , 2002 .

[45]  Tasoltan T. Basiev,et al.  Progress in color center lasers , 1995 .

[46]  Frank K. Tittel,et al.  Mid-Infrared Laser Applications in Spectroscopy , 2003 .

[47]  M. Tonelli,et al.  A novel cw tunable and mode-locked 2 µm Cr,Tm,Ho:YSGG:GSAG laser , 1998 .

[48]  Continuous-wave tunable Cr2+:ZnS laser , 2002 .

[49]  Low noise, high-brightness, broadband, all-fiber CW sources for OCT around 1300nm , 2004 .

[50]  V. Baev,et al.  Laser intracavity absorption spectroscopy , 1999 .

[51]  Ralph H. Page,et al.  Transition metal-doped zinc chalcogenides: Spectroscopy and laser demonstration of a new class of gain media , 1996 .

[52]  K. Petermann,et al.  Tunable room-temperature laser action of Cr4+-doped Y3ScxAl5−xO12 , 1994 .

[53]  Evgeni Sorokin,et al.  Multipulse operation and limits of the Kerr-lens mode-locking stability , 2003 .

[54]  Knight,et al.  Optical frequency synthesizer for precision spectroscopy , 2000, Physical review letters.

[55]  L. Correia,et al.  Intracavity absorption spectroscopy with thulium-doped fibre laser , 2003 .

[56]  Evgeni Sorokin,et al.  Tunable diode-pumped continuous-wave Cr2+:ZnSe laser , 2002 .

[57]  Bryce Schumm,et al.  Mid-infrared laser development based on transition metal doped cadmium manganese telluride , 2000 .

[58]  Hui Cao,et al.  Lasing in random media , 2003 .

[59]  Evgeni Sorokin,et al.  A novel cw mode-looked 2-/spl mu/m Cr,Tm,Ho:YSGG:GSAG laser , 1998, Technical Digest. Summaries of Papers Presented at the Conference on Lasers and Electro-Optics. Conference Edition. 1998 Technical Digest Series, Vol.6 (IEEE Cat. No.98CH36178).

[60]  S. M. Jacobsen,et al.  The near-infrared emission of Cr:Mn2SiO4 and Cr:MgCaSiO4 , 1993 .

[61]  Konstantin L. Vodopyanov,et al.  Pulsed Mid-IR Optical Parametric Oscillators , 2003 .

[62]  W. Gellermann Color center lasers , 1991 .

[63]  W. J. Alford,et al.  Single-Frequency Cr:ZnSe Laser , 2004 .

[64]  Frank K. Tittel,et al.  Compact laser difference-frequency spectrometer for multicomponent trace gas detection , 1998 .

[65]  Majid Ebrahim-Zadeh,et al.  Mid-Infrared Ultrafast and Continuous- Wave Optical Parametric Oscillators , 2003 .

[66]  Huber,et al.  Near-infrared emission of Cr4+-doped garnets: Lifetimes, quantum efficiencies, and emission cross sections. , 1995, Physical review. B, Condensed matter.

[67]  R. Bartram,et al.  Crystal-Field Engineering of Solid-State Laser Materials , 2000 .

[68]  Markus W. Sigrist,et al.  Trace-gas sensor based on mid-IR difference-frequency generation in PPLN with saturated output power , 2000 .

[69]  T A Birks,et al.  Group-velocity dispersion in photonic crystal fibers. , 1998, Optics letters.

[70]  E. Wintner,et al.  Directly diode-pumped tunable continuous-wave room-temperature Cr4+:YAG laser. , 1999, Optics letters.

[71]  Yehoshua Kalisky,et al.  Excited-state absorption studies of Cr/sup 4+/ ions in several garnet host crystals , 1998 .

[72]  W. Scharpf,et al.  Mid-Wave ZGP OPOs Pumped by a Cr:ZnSe Laser , 2001 .

[73]  Norihiko Nishizawa,et al.  Widely Broadened Super Continuum Generation Using Highly Nonlinear Dispersion Shifted Fibers and Femtosecond Fiber Laser , 2001 .

[74]  A. Kireev,et al.  Application of lasers with FA (II) color centers in KCl:Li crystals in intracavity laser spectroscopy , 1986 .

[75]  Klaus Petermann,et al.  Broadly Tunable Laser Emission from Tm:Y2O3 and Tm:Sc2O3 at 2µm , 2001 .

[76]  Joshua Jortner,et al.  The energy gap law for radiationless transitions in large molecules , 1970 .

[77]  Robert T. Menzies,et al.  Efficient CW diode-pumped Tm, Ho:YLF laser with tunability near 2.067 mu m , 1992 .

[78]  V. G. Shcherbitsky,et al.  Novel mid-infrared random power lasers: Cr2+:ZnS vs. Cr2+:ZnSe , 2004 .

[79]  F. Omenetto,et al.  Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation. , 2002, Optics express.

[80]  Y. Podmar’kov,et al.  Intracavity laser spectroscopy with a Co:MgF2 laser , 1998 .

[81]  H. Haus,et al.  Design and fabrication of double-chirped mirrors. , 1997, Optics letters.

[82]  J. Taylor,et al.  Femtosecond Pulse Generation from a Synchronously Pumped, Self-mode-locked Cr 4+ : YAG Laser , 1995 .

[83]  Vladilen S. Letokhov,et al.  5A10(b) - A laser with a nonresonant feedback , 1966 .

[84]  J G Fujimoto,et al.  Generation of 20-fs pulses by a prismless Cr(4+):YAG laser. , 2002, Optics letters.

[85]  D. Wandt,et al.  Supercontinuum generation with 200 pJ laser pulses in an extruded SF6 fiber at 1560 nm. , 2003, Optics express.

[86]  H. Schulz,et al.  Interpretation of Excitation Spectra of ZnS:Cr2+ by Fitting the Eigenvalues of the Tanabe‐Sugano Matrices , 1972 .

[87]  E. Swanson,et al.  Optical Coherence Tomography , 1992, LEOS '92 Conference Proceedings.

[88]  M. Sturge Temperature Dependence of Multiphonon Nonradiative Decay at an Isolated Impurity Center , 1973 .

[89]  E. A. Vinogradov,et al.  Spectroscopy and room-temperature continuous-wave lasing from a new gain material Cr/sup 2+/:ZnS/sub x/Se/sub 1-x/ , 2004, Conference on Lasers and Electro-Optics, 2004. (CLEO)..

[90]  M. Tonelli,et al.  Efficient, diode-pumped Tm(3)+:BaY(2)F(8) vibronic laser. , 2004, Optics express.

[91]  J R Taylor,et al.  Passive mode locking and dispersion measurement of a sub-100-fs Cr(4+):YAG laser. , 1994, Optics letters.

[92]  T. Sugaya,et al.  Self-starting mode-locked Cr(4+):YAG laser with a low-loss broadband semiconductor saturable-absorber mirror. , 1999, Optics letters.

[93]  Alessandra Toncelli,et al.  A diode-laser-pumped tunable Ho: YLF laser in the 2 µm region , 1994 .

[94]  Clifford R. Pollock,et al.  Cr/sup 4+/ lasers: present performance and prospects for new host lattices , 1995 .

[95]  Róbert Szipőcs,et al.  All-solid-state cavity-dumped sub-5-fs laser , 1997 .

[96]  Evgeni Sorokin,et al.  Tunable efficient continuous-wave room-temperature Tm3+:GdVO4 laser , 2002 .

[97]  B. B. Snavely,et al.  cw OPERATION OF AN ORGANIC DYE SOLUTION LASER , 1970 .

[98]  D. Wiersma,et al.  Localization, Multiple Scattering, and Lasing in Random Nanomedia , 2004 .

[99]  V. G. Shcherbitsky,et al.  Room-temperature lasing in nanocrystalline Cr2+:ZnSe random laser , 2004 .

[100]  Timothy A. Birks,et al.  Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source , 2002 .

[101]  S. Trivedi,et al.  Demonstration of room-temperature laser action at 2.5 mum from Cr(2+):Cd(0.85)Mn(0.15)Te. , 1997, Optics letters.

[102]  Govind P. Agrawal,et al.  Nonlinear Fiber Optics , 1989 .

[103]  Vladimir V. Fedorov,et al.  Laser Oscillation at 2.4 μm from Cr2+ in ZnSe Optically Pumped over Cr Ionization Transitions , 2005 .

[104]  E. Ippen,et al.  Oxidized GaAs/AlAs mirror with a quantum-well saturable absorber for ultrashort-pulse Cr4+:YAG laser , 2002 .

[105]  M. Tonelli,et al.  Efficient, diode-pumped Tm3+:BaY2F8 vibronic laser , 2004 .

[106]  Clifford R. Pollock,et al.  Mode-locked Cr(2+):ZnSe laser. , 2000, Optics letters.

[107]  K. Schepler,et al.  4.2 W Cr/sup 2+/:ZnSe face cooled disk laser , 2002, CLEO 2002.

[108]  T. H. Allik,et al.  Crystal growth and spectroscopic properties of Cr4+ in Ca2Al2SiO7 and Ca2Ga2SiO7 , 1992 .

[109]  Hui Cao,et al.  Dynamic response and relaxation oscillations in random lasers , 2002 .

[110]  G. Reali,et al.  Influence of thermal effects in Kerr-lens mode-locked femtosecond Cr4+:forsterite lasers , 1997 .

[111]  Clifford R. Pollock,et al.  Self-starting passively mode-locked tunable femtosecond Cr4+:YAG laser using a saturable absorber mirror , 1997 .

[112]  Timothy J. Carrig,et al.  Power scaling of Cr2+:ZnSe lasers , 2001 .

[113]  Supercontinuum generation from a Cr4+:YAG laser using a soft-glass extruded PCF , 2004 .

[114]  M. Tonelli,et al.  Active and passive mode-locking of the Cr2+:ZnSe laser , 2001 .

[115]  Günter Huber,et al.  Continuous-wave laser operation and quantum efficiency of titanium-doped sapphire , 1986 .

[116]  M. Kozielski Polytype single crystals of Zn1−xCdxS and ZnS1−xSex solid solutions grown from the melt under high argon pressure by bridgman's method , 1975 .

[117]  Thomas Bende,et al.  Mid-IR Laser Applications in Medicine , 2003 .

[118]  S. Mirov,et al.  Broadly tunable compact continuous-wave Cr(2+):ZnS laser. , 2002, Optics letters.

[119]  K. Naganuma,et al.  Compact diode-pumped all-solid-state femtosecond Cr(4+):YAG laser. , 1996, Optics letters.

[120]  Timothy J. Carrig,et al.  Transition-metal-doped chalcogenide lasers , 2002 .

[121]  G. A. Slack,et al.  Infrared Absorption in Some II-VI Compounds Doped with Cr , 1970 .

[122]  Irina T. Sorokina,et al.  Crystalline Mid-Infrared Lasers , 2003 .

[123]  F. Kärtner,et al.  Diode-pumped 10-fs Cr3+:LiCAF laser. , 2003, Optics letters.

[124]  H. Jenssen,et al.  Efficient continuous-wave TEM(00) and femtosecond Kerr-lens mode-locked Cr:LiSrGaF laser. , 1996, Optics Letters.

[125]  T. Tomaru,et al.  Two-element-cavity femtosecond Cr(4+):YAG laser operating at a 2.6-GHz repetition rate. , 2001, Optics letters.

[126]  Paul M. W. French,et al.  All-solid-state compact high repetition rate modelocked Cr4+:YAG laser , 1998 .

[127]  K. Schepler,et al.  Cr2+ emission spectroscopy in CdSe , 1997 .

[128]  Orazio Svelto,et al.  Quasi-continuous wave laser operation of Cr4+-doped Y2SiO5 at room temperature , 1993 .

[129]  J. S. Aitchison,et al.  Ultrafast nonresonant third-order optical nonlinearities in ZnSe for photonic switching at telecom wavelengths , 2004 .

[130]  M. Yamaga,et al.  Radiative and non-radiative decays from the excited state of Ti3+ ions in oxide crystals , 1990 .

[131]  A. Burger,et al.  Continuous-wave broadly tunable Cr2+:ZnSe laser. , 1999, Optics letters.

[132]  R. Stolen,et al.  The soliton laser. , 1984, Optics letters.

[133]  John Alcock,et al.  Hybrid semiconductor saturable absorber mirrors as passive mode-locking elements , 2017, Other Conferences.

[134]  S. Kuck,et al.  Laser-related spectroscopy of ion-doped crystals for tunable solid-state lasers , 2001 .

[135]  H.-J. Schulz,et al.  Luminescence of Cr2+ Centres and Related Optical Interactions Involving Crystal Field Levels of Chromium Ions in Zinc Sulfide , 1974 .

[136]  R. Powell Physics of Solid-State Laser Materials , 1998 .

[137]  Clifford R. Pollock,et al.  Continuous-wave self-mode-locked operation of a femtosecond Cr(4+):YAG laser. , 1994, Optics letters.

[138]  J.-Y. Mandin,et al.  Interpretation of the CO2 absorption bands observed in the Venus infrared spectrum between 1 and 2.5 μm , 1977 .

[139]  V. G. Shcherbitsky,et al.  1.9- m and 2.0- m laser diode pumping of Cr(2+) :ZnSe and Cr(2+) :CdMnTe. , 2002, Optics letters.

[140]  M Kaminska,et al.  Absorption and luminescence of Cr2+(d4) in II-VI compounds , 1979 .

[141]  E. Rafailov,et al.  Compact Femtosecond Oscillators , 2004 .

[142]  E. Sorokin Solid-State Materials for Few-Cycle Pulse Generation and Amplification , 2004 .

[143]  M. H. Garrett,et al.  Comparison of Chromium-Doped Forsterite and Åkermanite Laser Host Crystals , 1991 .

[144]  K. Petermann,et al.  Excited state absorption and its influence on the laser behavior of Cr4+-doped garnets , 1997 .

[145]  P. Russell Photonic Crystal Fibers , 2003, Science.

[146]  B. Henderson,et al.  Optical spectroscopy of inorganic solids , 1989 .

[147]  A. Sennaroğlu Broadly tunable Cr4+-doped solid-state lasers in the near infrared and visible , 2002 .

[148]  A. Ivanov,et al.  Experimental determination of the nonlinear refractive index in an operating Cr:forsterite femtosecond laser , 1997 .

[149]  S. Trivedi,et al.  Demonstration of room-temperature laser action at 2.5 μm from Cr2+ :Cd0.85Mn0.15Te , 2002 .

[150]  Viktor E. Kisel,et al.  Luminescence lifetime measurements in diffusion doped Cr:ZnSe , 2003, 2003 Conference on Lasers and Electro-Optics Europe (CLEO/Europe 2003) (IEEE Cat. No.03TH8666).

[151]  Harald Giessen,et al.  Intra- and extra-cavity spectral broadening and continuum generation at 1.5 μm using compact low-energy femtosecond Cr:YAG laser , 2003 .

[152]  K. Schepler,et al.  Thermal effects in Cr/sup 2+/:ZnSe thin disk lasers , 2005, IEEE Journal of Selected Topics in Quantum Electronics.

[153]  T A Birks,et al.  Supercontinuum generation in tapered fibers. , 2002, Optics letters.

[154]  L. Johnson,et al.  Phonon-Terminated Optical Masers , 1966 .

[155]  U. Keller,et al.  High-average-power diode-pumped femtosecond Cr:LiSAF lasers , 1997 .

[156]  S. Gayen,et al.  Laser action in chromium-doped forsterite , 1988 .

[157]  Evgeni Sorokin,et al.  Widely Tunable Cr2+:ZnSe Laser Source for Trace-Gas Sensing , 2005 .

[158]  R. Byer,et al.  Continuous-wave mode-locked Nd:glass laser pumped by a laser diode. , 1988, Optics letters.

[159]  L. Johnson,et al.  Electronic- and phonon-terminated laser emission from Ho 3+ in BaY 2 F 8 , 1974 .

[160]  J R Taylor,et al.  Self-starting Kerr-lens mode-locked femtosecond Cr(4+):YAG and picosecond Pr(3+):YLF solid-state lasers. , 1996, Optics letters.

[161]  C. W. Struck,et al.  Unified model of energy transfer for arbitrary Franck-Condon offset and temperature , 1978 .

[162]  L. Johnson,et al.  Optical Maser Oscillation from Ni^{2+} in MgF_{2} Involving Simultaneous Emission of Phonons , 1963 .

[163]  G Korn,et al.  Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers. , 2002, Physical review letters.

[164]  Lloyd L. Chase,et al.  Optical spectroscopy of the new laser materials, LiSrAlF6:Cr3+ and LiCaAlF6:Cr3+ , 1989 .

[165]  B. Henderson,et al.  Near-infrared laser crystals based on 3d2 ions Spectroscopic studies of 3d2 ions in oxide, melilite and apatite crystals , 1997 .

[166]  Zhigang Zhang,et al.  Gold-reflector-based semiconductor saturable absorber mirror for femtosecond mode-locked Cr4+:YAG lasers , 2000 .

[167]  J. Fujimoto,et al.  Spectroscopic optical coherence tomography. , 2000 .

[168]  L. Mollenauer,et al.  A broadly tunable cw laser using color centers , 1974 .

[169]  G. Michel,et al.  High-resolution Fourier spectra of stars and planets , 1974 .

[170]  H.-J. Schulz,et al.  Infrared luminescence of ZnSe : Cr crystals , 1976 .

[171]  K. Naganuma,et al.  Characteristics of femtosecond pulses near 1.5 microm in a self-mode-locked Cr(4+):YAG laser. , 1994, Optics letters.

[172]  Timothy J. Carrig,et al.  Chromium-doped chalcogenide lasers , 2004, 2005 IEEE LEOS Annual Meeting Conference Proceedings.

[173]  Hall,et al.  Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis , 2000, Science.

[174]  S. M. Jacobsen,et al.  Spectroscopic properties of Cr(4+):Lu(3)Al(5)O(12). , 1993, Optics letters.

[175]  S. Mirov,et al.  Spectroscopic Characterization and Laser Performance of Diffusion Doped Cr2+:ZnS , 2001 .

[176]  P. Corkum,et al.  Plasma perspective on strong field multiphoton ionization. , 1993, Physical review letters.

[177]  N. Picqué,et al.  High-information time-resolved Fourier transform spectroscopy at work. , 2000, Applied optics.

[178]  N. Picqué,et al.  Mid-IR High-Resolution Intracavity Cr2+:ZnSe Laser-Based Spectrometer , 2005 .

[179]  L. Johnson,et al.  Spontaneous and stimulated emission from Co2+ ions in MgF2 and ZnF2 , 1964 .

[180]  K. Schepler,et al.  Efficient grating-tuned mid-infrared Cr2+:CdSe laser. , 1999, Optics letters.

[181]  A. Stentz,et al.  Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm , 2000 .

[182]  J R Taylor,et al.  Continuous-wave mode-locked Cr(4+):YAG laser. , 1993, Optics letters.

[183]  E. Sorokin,et al.  Directly diode-pumped femtosecond Cr^4+:YAG laser , 2003 .

[184]  Ch. M. Briskina,et al.  BRIEF COMMUNICATIONS: Luminescence and stimulated emission of neodymium in sodium lanthanum molybdate powders , 1986 .

[185]  E. Sorokin,et al.  Room-temperature CW diode-pumped Cr2+:ZnSe laser , 2001 .

[186]  Gianluca Galzerano,et al.  Optical spectroscopy and diode-pumped laser characteristics of codoped Tm-Ho : YLF and Tm-Ho : BaYF : a comparative analysis , 2002 .

[187]  A. V. Shestakov,et al.  Lasing due to impurity color centers in yttrium aluminum garnet crystals at wavelengths in the range 1.35–1.45 μm , 1988 .

[188]  Leon Esterowitz,et al.  Efficient 1.94-/spl mu/m Tm:YALO laser , 1995 .

[189]  Evgeni Sorokin,et al.  Photoacoustic monitoring of gases using a novel laser source tunable around 2.5 μm , 2005 .

[190]  B E Bouma,et al.  Rapid acquisition of in vivo biological images by use of optical coherence tomography. , 1996, Optics letters.

[191]  R R Alfano,et al.  Continuous-wave laser operation of chromium-doped forsterite. , 1989, Optics letters.