Ultrabroadband infrared solid-state lasers
暂无分享,去创建一个
[1] J. Taylor,et al. All-solid-state femtosecond sources in the near infrared , 1997 .
[2] M. Nishimura,et al. Silica-based functional fibers with enhanced nonlinearity and their applications , 1999 .
[3] G. Grebe,et al. IR-luminescence of ZnS:Cr , 1970 .
[4] J. Schuman,et al. Optical coherence tomography. , 2000, Science.
[5] R. Alfano,et al. Room-temperature near-infrared tunable laser operation of Cr(4+):Ca(2)GeO(4). , 1996, Optics letters.
[6] L. Johnson,et al. Phonon-terminated laser emission from Ni(2+) ions in KMgF(3). , 1983, Optics letters.
[7] T A Birks,et al. Long-wavelength continuum generation about the second dispersion zero of a tapered fiber. , 2002, Optics letters.
[8] S B Mirov,et al. Erbium fiber laser-pumped continuous-wave microchip Cr(2+):ZnS and Cr(2+):ZnSe lasers. , 2002, Optics letters.
[9] F. Wise,et al. Femtosecond diode-pumped Cr:LiSGAF lasers , 1996 .
[10] T. Ninomiya,et al. Continuous-wave operation up to 36/spl deg/C of 1.3-μm GaInAsP-InP vertical-cavity surface-emitting lasers , 1997, IEEE Photonics Technology Letters.
[11] S. W. Kutcher,et al. Mid‐Infrared Lasing from a Novel Optical Material: Chromium–Doped Cd0.55Mn0.45Te , 1999 .
[12] M. Mond,et al. Efficient laser operation and continuous-wave diode pumping of Cr2+:ZnSe single crystals , 2001 .
[13] H. Petek,et al. Femtosecond Cr(4+):YAG laser with an L-fold cavity operating at a 1.2-GHz repetition rate. , 2000, Optics letters.
[14] Ralph H. Page,et al. Efficient broadly tunable continuous-wave Cr 2+ :ZnSe laser , 2001 .
[15] E. Sorokin,et al. Directly diode-pumped Kerr-lens mode-locked Cr4+:YAG laser. , 2004, Optics letters.
[16] J. Haus,et al. Mode-locked Cr4+:YAG laser: model and experiment , 1997 .
[17] J. Taylor,et al. Diode-pumped Cr:LiSAF all-solid-state femtosecond oscillator and regenerative amplifier. , 1995, Optics letters.
[18] Markus W. Sigrist,et al. Mid-IR Difference Frequency Generation , 2003 .
[19] K Bergman,et al. Saturable Bragg reflector self-starting passive mode locking of a Cr(4+):YAG laser pumped with a diode-pumped Nd:YVO(4) laser. , 1996, Optics letters.
[20] A. Sennaroglu,et al. Continuous-wave power performance of a 2.47-/spl mu/m Cr/sup 2+/:ZnSe laser: experiment and modeling , 2000, IEEE Journal of Quantum Electronics.
[21] S. Gayen,et al. Near infrared tunable operation of chromium doped forsterite laser. , 1989, Applied optics.
[22] G. A. Slack,et al. Near and far infrared absorption in Cr doped ZnSe , 1969 .
[23] V. A. Akimov,et al. Intracavity laser spectroscopy using a Cr2+ : ZnSe laser , 2004 .
[24] Timothy J. Carrig,et al. Mode locked and Q-switched Cr:ZnSe laser using a Semiconductor Saturable Absorbing Mirror (SESAM) , 2005 .
[25] K. Bergman,et al. True fundamental solitonsin a passively mode-locked short-cavity Cr4+YAG laser , 1997 .
[26] Mauro Tonelli,et al. A new broadly tunable room-temperature continuous-wave Cr 2+ :ZnS x Se 1-x laser , 2005 .
[27] E. Wintner,et al. Sub-20 fs pulse generation from the mirror dispersion controlled Cr:LiSGaF and Cr:LiSAF lasers , 1997 .
[28] G. Huber,et al. Tunable room-temperature cw laser action in Cr3+: GdScGa-Garnet , 1983 .
[29] Tasoltan T. Basiev,et al. Crystalline and Fiber Raman Lasers , 2003 .
[30] F. Krausz,et al. Kerr lens mode locking. , 1992, Optics letters.
[31] Ralph H. Page,et al. Cr/sup 2+/-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers , 1997 .
[32] G. Tempea,et al. Self-starting five optical cycle pulse generation in Cr4+:YAG laser , 2003 .
[33] Irina T. Sorokina,et al. Cr2+-doped II–VI materials for lasers and nonlinear optics , 2004 .
[34] K. Schepler,et al. Extended mid-IR tuning of a Cr2+:CdSe laser , 2002 .
[35] Yehoshua Kalisky,et al. Cr4+-doped crystals: their use as lasers and passive Q-switches , 2004 .
[36] U. Keller,et al. Self-starting soliton-modelocked femtosecond Cr(4+):YAG laser using an antiresonant Fabry–Pérot saturable absorber , 1997 .
[37] R. Stoneman,et al. Efficient, broadly tunable, laser-pumped Tm:YAG and Tm:YSGG cw lasers. , 1990, Optics letters.
[38] S. Trivedi,et al. Slope efficiency and tunability of a Cr2+: Cd0.85Mn0.15Te mid-infrared laser , 1998 .
[39] U. Hömmerich,et al. Observation of lasing from Cr2+:CdTe and compositional effects in Cr2+-doped II-VI semiconductors , 2002 .
[40] R. Beach,et al. Demonstrations of diode-pumped and grating-tuned ZnSe:Cr{sup 2+} lasers. Revision 1 , 1997 .
[41] M. Tonelli,et al. Mode-locked ceramic Cr2+ :ZnSe laser , 2003 .
[42] A. Alcock,et al. Broadly tunable continuous-wave diode-pumped Cr4+:YAG laser , 2003 .
[43] Evgeni Sorokin,et al. Spectral properties of the Kerr-lens mode-locked Cr 4+ :YAG laser , 2003 .
[44] Leon Esterowitz,et al. Efficient 1.94-μm Tm:YALO laser , 2002 .
[45] Tasoltan T. Basiev,et al. Progress in color center lasers , 1995 .
[46] Frank K. Tittel,et al. Mid-Infrared Laser Applications in Spectroscopy , 2003 .
[47] M. Tonelli,et al. A novel cw tunable and mode-locked 2 µm Cr,Tm,Ho:YSGG:GSAG laser , 1998 .
[48] Continuous-wave tunable Cr2+:ZnS laser , 2002 .
[49] Low noise, high-brightness, broadband, all-fiber CW sources for OCT around 1300nm , 2004 .
[50] V. Baev,et al. Laser intracavity absorption spectroscopy , 1999 .
[51] Ralph H. Page,et al. Transition metal-doped zinc chalcogenides: Spectroscopy and laser demonstration of a new class of gain media , 1996 .
[52] K. Petermann,et al. Tunable room-temperature laser action of Cr4+-doped Y3ScxAl5−xO12 , 1994 .
[53] Evgeni Sorokin,et al. Multipulse operation and limits of the Kerr-lens mode-locking stability , 2003 .
[54] Knight,et al. Optical frequency synthesizer for precision spectroscopy , 2000, Physical review letters.
[55] L. Correia,et al. Intracavity absorption spectroscopy with thulium-doped fibre laser , 2003 .
[56] Evgeni Sorokin,et al. Tunable diode-pumped continuous-wave Cr2+:ZnSe laser , 2002 .
[57] Bryce Schumm,et al. Mid-infrared laser development based on transition metal doped cadmium manganese telluride , 2000 .
[58] Hui Cao,et al. Lasing in random media , 2003 .
[59] Evgeni Sorokin,et al. A novel cw mode-looked 2-/spl mu/m Cr,Tm,Ho:YSGG:GSAG laser , 1998, Technical Digest. Summaries of Papers Presented at the Conference on Lasers and Electro-Optics. Conference Edition. 1998 Technical Digest Series, Vol.6 (IEEE Cat. No.98CH36178).
[60] S. M. Jacobsen,et al. The near-infrared emission of Cr:Mn2SiO4 and Cr:MgCaSiO4 , 1993 .
[61] Konstantin L. Vodopyanov,et al. Pulsed Mid-IR Optical Parametric Oscillators , 2003 .
[62] W. Gellermann. Color center lasers , 1991 .
[63] W. J. Alford,et al. Single-Frequency Cr:ZnSe Laser , 2004 .
[64] Frank K. Tittel,et al. Compact laser difference-frequency spectrometer for multicomponent trace gas detection , 1998 .
[65] Majid Ebrahim-Zadeh,et al. Mid-Infrared Ultrafast and Continuous- Wave Optical Parametric Oscillators , 2003 .
[66] Huber,et al. Near-infrared emission of Cr4+-doped garnets: Lifetimes, quantum efficiencies, and emission cross sections. , 1995, Physical review. B, Condensed matter.
[67] R. Bartram,et al. Crystal-Field Engineering of Solid-State Laser Materials , 2000 .
[68] Markus W. Sigrist,et al. Trace-gas sensor based on mid-IR difference-frequency generation in PPLN with saturated output power , 2000 .
[69] T A Birks,et al. Group-velocity dispersion in photonic crystal fibers. , 1998, Optics letters.
[70] E. Wintner,et al. Directly diode-pumped tunable continuous-wave room-temperature Cr4+:YAG laser. , 1999, Optics letters.
[71] Yehoshua Kalisky,et al. Excited-state absorption studies of Cr/sup 4+/ ions in several garnet host crystals , 1998 .
[72] W. Scharpf,et al. Mid-Wave ZGP OPOs Pumped by a Cr:ZnSe Laser , 2001 .
[73] Norihiko Nishizawa,et al. Widely Broadened Super Continuum Generation Using Highly Nonlinear Dispersion Shifted Fibers and Femtosecond Fiber Laser , 2001 .
[74] A. Kireev,et al. Application of lasers with FA (II) color centers in KCl:Li crystals in intracavity laser spectroscopy , 1986 .
[75] Klaus Petermann,et al. Broadly Tunable Laser Emission from Tm:Y2O3 and Tm:Sc2O3 at 2µm , 2001 .
[76] Joshua Jortner,et al. The energy gap law for radiationless transitions in large molecules , 1970 .
[77] Robert T. Menzies,et al. Efficient CW diode-pumped Tm, Ho:YLF laser with tunability near 2.067 mu m , 1992 .
[78] V. G. Shcherbitsky,et al. Novel mid-infrared random power lasers: Cr2+:ZnS vs. Cr2+:ZnSe , 2004 .
[79] F. Omenetto,et al. Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation. , 2002, Optics express.
[80] Y. Podmar’kov,et al. Intracavity laser spectroscopy with a Co:MgF2 laser , 1998 .
[81] H. Haus,et al. Design and fabrication of double-chirped mirrors. , 1997, Optics letters.
[82] J. Taylor,et al. Femtosecond Pulse Generation from a Synchronously Pumped, Self-mode-locked Cr 4+ : YAG Laser , 1995 .
[83] Vladilen S. Letokhov,et al. 5A10(b) - A laser with a nonresonant feedback , 1966 .
[84] J G Fujimoto,et al. Generation of 20-fs pulses by a prismless Cr(4+):YAG laser. , 2002, Optics letters.
[85] D. Wandt,et al. Supercontinuum generation with 200 pJ laser pulses in an extruded SF6 fiber at 1560 nm. , 2003, Optics express.
[86] H. Schulz,et al. Interpretation of Excitation Spectra of ZnS:Cr2+ by Fitting the Eigenvalues of the Tanabe‐Sugano Matrices , 1972 .
[87] E. Swanson,et al. Optical Coherence Tomography , 1992, LEOS '92 Conference Proceedings.
[88] M. Sturge. Temperature Dependence of Multiphonon Nonradiative Decay at an Isolated Impurity Center , 1973 .
[89] E. A. Vinogradov,et al. Spectroscopy and room-temperature continuous-wave lasing from a new gain material Cr/sup 2+/:ZnS/sub x/Se/sub 1-x/ , 2004, Conference on Lasers and Electro-Optics, 2004. (CLEO)..
[90] M. Tonelli,et al. Efficient, diode-pumped Tm(3)+:BaY(2)F(8) vibronic laser. , 2004, Optics express.
[91] J R Taylor,et al. Passive mode locking and dispersion measurement of a sub-100-fs Cr(4+):YAG laser. , 1994, Optics letters.
[92] T. Sugaya,et al. Self-starting mode-locked Cr(4+):YAG laser with a low-loss broadband semiconductor saturable-absorber mirror. , 1999, Optics letters.
[93] Alessandra Toncelli,et al. A diode-laser-pumped tunable Ho: YLF laser in the 2 µm region , 1994 .
[94] Clifford R. Pollock,et al. Cr/sup 4+/ lasers: present performance and prospects for new host lattices , 1995 .
[95] Róbert Szipőcs,et al. All-solid-state cavity-dumped sub-5-fs laser , 1997 .
[96] Evgeni Sorokin,et al. Tunable efficient continuous-wave room-temperature Tm3+:GdVO4 laser , 2002 .
[97] B. B. Snavely,et al. cw OPERATION OF AN ORGANIC DYE SOLUTION LASER , 1970 .
[98] D. Wiersma,et al. Localization, Multiple Scattering, and Lasing in Random Nanomedia , 2004 .
[99] V. G. Shcherbitsky,et al. Room-temperature lasing in nanocrystalline Cr2+:ZnSe random laser , 2004 .
[100] Timothy A. Birks,et al. Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source , 2002 .
[101] S. Trivedi,et al. Demonstration of room-temperature laser action at 2.5 mum from Cr(2+):Cd(0.85)Mn(0.15)Te. , 1997, Optics letters.
[102] Govind P. Agrawal,et al. Nonlinear Fiber Optics , 1989 .
[103] Vladimir V. Fedorov,et al. Laser Oscillation at 2.4 μm from Cr2+ in ZnSe Optically Pumped over Cr Ionization Transitions , 2005 .
[104] E. Ippen,et al. Oxidized GaAs/AlAs mirror with a quantum-well saturable absorber for ultrashort-pulse Cr4+:YAG laser , 2002 .
[105] M. Tonelli,et al. Efficient, diode-pumped Tm3+:BaY2F8 vibronic laser , 2004 .
[106] Clifford R. Pollock,et al. Mode-locked Cr(2+):ZnSe laser. , 2000, Optics letters.
[107] K. Schepler,et al. 4.2 W Cr/sup 2+/:ZnSe face cooled disk laser , 2002, CLEO 2002.
[108] T. H. Allik,et al. Crystal growth and spectroscopic properties of Cr4+ in Ca2Al2SiO7 and Ca2Ga2SiO7 , 1992 .
[109] Hui Cao,et al. Dynamic response and relaxation oscillations in random lasers , 2002 .
[110] G. Reali,et al. Influence of thermal effects in Kerr-lens mode-locked femtosecond Cr4+:forsterite lasers , 1997 .
[111] Clifford R. Pollock,et al. Self-starting passively mode-locked tunable femtosecond Cr4+:YAG laser using a saturable absorber mirror , 1997 .
[112] Timothy J. Carrig,et al. Power scaling of Cr2+:ZnSe lasers , 2001 .
[113] Supercontinuum generation from a Cr4+:YAG laser using a soft-glass extruded PCF , 2004 .
[114] M. Tonelli,et al. Active and passive mode-locking of the Cr2+:ZnSe laser , 2001 .
[115] Günter Huber,et al. Continuous-wave laser operation and quantum efficiency of titanium-doped sapphire , 1986 .
[116] M. Kozielski. Polytype single crystals of Zn1−xCdxS and ZnS1−xSex solid solutions grown from the melt under high argon pressure by bridgman's method , 1975 .
[117] Thomas Bende,et al. Mid-IR Laser Applications in Medicine , 2003 .
[118] S. Mirov,et al. Broadly tunable compact continuous-wave Cr(2+):ZnS laser. , 2002, Optics letters.
[119] K. Naganuma,et al. Compact diode-pumped all-solid-state femtosecond Cr(4+):YAG laser. , 1996, Optics letters.
[120] Timothy J. Carrig,et al. Transition-metal-doped chalcogenide lasers , 2002 .
[121] G. A. Slack,et al. Infrared Absorption in Some II-VI Compounds Doped with Cr , 1970 .
[122] Irina T. Sorokina,et al. Crystalline Mid-Infrared Lasers , 2003 .
[123] F. Kärtner,et al. Diode-pumped 10-fs Cr3+:LiCAF laser. , 2003, Optics letters.
[124] H. Jenssen,et al. Efficient continuous-wave TEM(00) and femtosecond Kerr-lens mode-locked Cr:LiSrGaF laser. , 1996, Optics Letters.
[125] T. Tomaru,et al. Two-element-cavity femtosecond Cr(4+):YAG laser operating at a 2.6-GHz repetition rate. , 2001, Optics letters.
[126] Paul M. W. French,et al. All-solid-state compact high repetition rate modelocked Cr4+:YAG laser , 1998 .
[127] K. Schepler,et al. Cr2+ emission spectroscopy in CdSe , 1997 .
[128] Orazio Svelto,et al. Quasi-continuous wave laser operation of Cr4+-doped Y2SiO5 at room temperature , 1993 .
[129] J. S. Aitchison,et al. Ultrafast nonresonant third-order optical nonlinearities in ZnSe for photonic switching at telecom wavelengths , 2004 .
[130] M. Yamaga,et al. Radiative and non-radiative decays from the excited state of Ti3+ ions in oxide crystals , 1990 .
[131] A. Burger,et al. Continuous-wave broadly tunable Cr2+:ZnSe laser. , 1999, Optics letters.
[132] R. Stolen,et al. The soliton laser. , 1984, Optics letters.
[133] John Alcock,et al. Hybrid semiconductor saturable absorber mirrors as passive mode-locking elements , 2017, Other Conferences.
[134] S. Kuck,et al. Laser-related spectroscopy of ion-doped crystals for tunable solid-state lasers , 2001 .
[135] H.-J. Schulz,et al. Luminescence of Cr2+ Centres and Related Optical Interactions Involving Crystal Field Levels of Chromium Ions in Zinc Sulfide , 1974 .
[136] R. Powell. Physics of Solid-State Laser Materials , 1998 .
[137] Clifford R. Pollock,et al. Continuous-wave self-mode-locked operation of a femtosecond Cr(4+):YAG laser. , 1994, Optics letters.
[138] J.-Y. Mandin,et al. Interpretation of the CO2 absorption bands observed in the Venus infrared spectrum between 1 and 2.5 μm , 1977 .
[139] V. G. Shcherbitsky,et al. 1.9- m and 2.0- m laser diode pumping of Cr(2+) :ZnSe and Cr(2+) :CdMnTe. , 2002, Optics letters.
[140] M Kaminska,et al. Absorption and luminescence of Cr2+(d4) in II-VI compounds , 1979 .
[141] E. Rafailov,et al. Compact Femtosecond Oscillators , 2004 .
[142] E. Sorokin. Solid-State Materials for Few-Cycle Pulse Generation and Amplification , 2004 .
[143] M. H. Garrett,et al. Comparison of Chromium-Doped Forsterite and Åkermanite Laser Host Crystals , 1991 .
[144] K. Petermann,et al. Excited state absorption and its influence on the laser behavior of Cr4+-doped garnets , 1997 .
[145] P. Russell. Photonic Crystal Fibers , 2003, Science.
[146] B. Henderson,et al. Optical spectroscopy of inorganic solids , 1989 .
[147] A. Sennaroğlu. Broadly tunable Cr4+-doped solid-state lasers in the near infrared and visible , 2002 .
[148] A. Ivanov,et al. Experimental determination of the nonlinear refractive index in an operating Cr:forsterite femtosecond laser , 1997 .
[149] S. Trivedi,et al. Demonstration of room-temperature laser action at 2.5 μm from Cr2+ :Cd0.85Mn0.15Te , 2002 .
[150] Viktor E. Kisel,et al. Luminescence lifetime measurements in diffusion doped Cr:ZnSe , 2003, 2003 Conference on Lasers and Electro-Optics Europe (CLEO/Europe 2003) (IEEE Cat. No.03TH8666).
[151] Harald Giessen,et al. Intra- and extra-cavity spectral broadening and continuum generation at 1.5 μm using compact low-energy femtosecond Cr:YAG laser , 2003 .
[152] K. Schepler,et al. Thermal effects in Cr/sup 2+/:ZnSe thin disk lasers , 2005, IEEE Journal of Selected Topics in Quantum Electronics.
[153] T A Birks,et al. Supercontinuum generation in tapered fibers. , 2002, Optics letters.
[154] L. Johnson,et al. Phonon-Terminated Optical Masers , 1966 .
[155] U. Keller,et al. High-average-power diode-pumped femtosecond Cr:LiSAF lasers , 1997 .
[156] S. Gayen,et al. Laser action in chromium-doped forsterite , 1988 .
[157] Evgeni Sorokin,et al. Widely Tunable Cr2+:ZnSe Laser Source for Trace-Gas Sensing , 2005 .
[158] R. Byer,et al. Continuous-wave mode-locked Nd:glass laser pumped by a laser diode. , 1988, Optics letters.
[159] L. Johnson,et al. Electronic- and phonon-terminated laser emission from Ho 3+ in BaY 2 F 8 , 1974 .
[160] J R Taylor,et al. Self-starting Kerr-lens mode-locked femtosecond Cr(4+):YAG and picosecond Pr(3+):YLF solid-state lasers. , 1996, Optics letters.
[161] C. W. Struck,et al. Unified model of energy transfer for arbitrary Franck-Condon offset and temperature , 1978 .
[162] L. Johnson,et al. Optical Maser Oscillation from Ni^{2+} in MgF_{2} Involving Simultaneous Emission of Phonons , 1963 .
[163] G Korn,et al. Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers. , 2002, Physical review letters.
[164] Lloyd L. Chase,et al. Optical spectroscopy of the new laser materials, LiSrAlF6:Cr3+ and LiCaAlF6:Cr3+ , 1989 .
[165] B. Henderson,et al. Near-infrared laser crystals based on 3d2 ions Spectroscopic studies of 3d2 ions in oxide, melilite and apatite crystals , 1997 .
[166] Zhigang Zhang,et al. Gold-reflector-based semiconductor saturable absorber mirror for femtosecond mode-locked Cr4+:YAG lasers , 2000 .
[167] J. Fujimoto,et al. Spectroscopic optical coherence tomography. , 2000 .
[168] L. Mollenauer,et al. A broadly tunable cw laser using color centers , 1974 .
[169] G. Michel,et al. High-resolution Fourier spectra of stars and planets , 1974 .
[170] H.-J. Schulz,et al. Infrared luminescence of ZnSe : Cr crystals , 1976 .
[171] K. Naganuma,et al. Characteristics of femtosecond pulses near 1.5 microm in a self-mode-locked Cr(4+):YAG laser. , 1994, Optics letters.
[172] Timothy J. Carrig,et al. Chromium-doped chalcogenide lasers , 2004, 2005 IEEE LEOS Annual Meeting Conference Proceedings.
[173] Hall,et al. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis , 2000, Science.
[174] S. M. Jacobsen,et al. Spectroscopic properties of Cr(4+):Lu(3)Al(5)O(12). , 1993, Optics letters.
[175] S. Mirov,et al. Spectroscopic Characterization and Laser Performance of Diffusion Doped Cr2+:ZnS , 2001 .
[176] P. Corkum,et al. Plasma perspective on strong field multiphoton ionization. , 1993, Physical review letters.
[177] N. Picqué,et al. High-information time-resolved Fourier transform spectroscopy at work. , 2000, Applied optics.
[178] N. Picqué,et al. Mid-IR High-Resolution Intracavity Cr2+:ZnSe Laser-Based Spectrometer , 2005 .
[179] L. Johnson,et al. Spontaneous and stimulated emission from Co2+ ions in MgF2 and ZnF2 , 1964 .
[180] K. Schepler,et al. Efficient grating-tuned mid-infrared Cr2+:CdSe laser. , 1999, Optics letters.
[181] A. Stentz,et al. Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm , 2000 .
[182] J R Taylor,et al. Continuous-wave mode-locked Cr(4+):YAG laser. , 1993, Optics letters.
[183] E. Sorokin,et al. Directly diode-pumped femtosecond Cr^4+:YAG laser , 2003 .
[184] Ch. M. Briskina,et al. BRIEF COMMUNICATIONS: Luminescence and stimulated emission of neodymium in sodium lanthanum molybdate powders , 1986 .
[185] E. Sorokin,et al. Room-temperature CW diode-pumped Cr2+:ZnSe laser , 2001 .
[186] Gianluca Galzerano,et al. Optical spectroscopy and diode-pumped laser characteristics of codoped Tm-Ho : YLF and Tm-Ho : BaYF : a comparative analysis , 2002 .
[187] A. V. Shestakov,et al. Lasing due to impurity color centers in yttrium aluminum garnet crystals at wavelengths in the range 1.35–1.45 μm , 1988 .
[188] Leon Esterowitz,et al. Efficient 1.94-/spl mu/m Tm:YALO laser , 1995 .
[189] Evgeni Sorokin,et al. Photoacoustic monitoring of gases using a novel laser source tunable around 2.5 μm , 2005 .
[190] B E Bouma,et al. Rapid acquisition of in vivo biological images by use of optical coherence tomography. , 1996, Optics letters.
[191] R R Alfano,et al. Continuous-wave laser operation of chromium-doped forsterite. , 1989, Optics letters.