Robust Estimation for Partial Functional Linear Regression Model Based on Modal Regression

This paper presents a robust estimation procedure by using modal regression for the partial functional linear regression, which combines the common linear model with the functional linear regression model. The outstanding merit of the new method is that it is robust against outliers or heavy-tail error distributions while performs no worse than the least-square-based estimation method for normal error cases. The slope function is fitted by B-spline. Under suitable conditions, the authors obtain the convergence rates and asymptotic normality of the estimators. Finally, simulation studies and a real data example are conducted to examine the finite sample performance of the proposed method. Both the simulation results and the real data analysis confirm that the newly proposed method works very well.

[1]  James O. Ramsay,et al.  Applied Functional Data Analysis: Methods and Case Studies , 2002 .

[2]  T. Fearn,et al.  Bayesian Wavelet Regression on Curves With Application to a Spectroscopic Calibration Problem , 2001 .

[3]  Weihua Zhao,et al.  Robust and efficient variable selection for semiparametric partially linear varying coefficient model based on modal regression , 2013, Annals of the Institute of Statistical Mathematics.

[4]  Hyejin Shin,et al.  Partial functional linear regression , 2009 .

[5]  P. Yu,et al.  A test of linearity in partial functional linear regression , 2016 .

[6]  Zhongzhang Zhang,et al.  Varying-coefficient partially functional linear quantile regression models , 2017 .

[7]  Masaaki Imaizumi,et al.  PCA-based estimation for functional linear regression with functional responses , 2016, J. Multivar. Anal..

[8]  Xin Qi,et al.  Sparse wavelet regression with multiple predictive curves , 2015, J. Multivar. Anal..

[9]  Jane-ling Wang,et al.  Functional linear regression analysis for longitudinal data , 2005, math/0603132.

[10]  Joel L. Horowitz,et al.  Methodology and convergence rates for functional linear regression , 2007, 0708.0466.

[11]  Ulrich Stadtmüller,et al.  Generalized functional linear models , 2005 .

[12]  Piotr Kokoszka,et al.  Inference for Functional Data with Applications , 2012 .

[13]  W. Yao,et al.  A New Regression Model: Modal Linear Regression , 2014 .

[14]  Runze Li,et al.  Local modal regression , 2012, Journal of nonparametric statistics.

[15]  M. Yuan,et al.  A Reproducing Kernel Hilbert Space Approach to Functional Linear Regression , 2010, 1211.2607.

[16]  Philippe Vieu,et al.  Semi-functional partial linear regression , 2006 .

[17]  T. Tony Cai,et al.  Prediction in functional linear regression , 2006 .

[18]  James O. Ramsay,et al.  Functional Data Analysis , 2005 .

[19]  T. Fearn,et al.  Application of near infrared reflectance spectroscopy to the compositional analysis of biscuits and biscuit doughs , 1984 .

[20]  E. Parzen On Estimation of a Probability Density Function and Mode , 1962 .

[21]  L. Schumaker Spline Functions: Basic Theory , 1981 .

[22]  André Mas,et al.  Functional linear regression with derivatives , 2006 .

[23]  Haipeng Shen,et al.  Functional Coefficient Regression Models for Non‐linear Time Series: A Polynomial Spline Approach , 2004 .

[24]  P. Vieu,et al.  Nonparametric Functional Data Analysis: Theory and Practice (Springer Series in Statistics) , 2006 .

[25]  Fang Yao,et al.  Partially functional linear regression in high dimensions , 2016 .

[26]  Zhongyi Zhu,et al.  Robust Estimation in Generalized Partial Linear Models for Clustered Data , 2005 .

[27]  H. Zou,et al.  Composite quantile regression and the oracle Model Selection Theory , 2008, 0806.2905.

[28]  Joseph P. Romano On weak convergence and optimality of kernel density estimates of the mode , 1988 .

[29]  A. Boulesteix,et al.  Penalized Partial Least Squares with Applications to B-Spline Transformations and Functional Data , 2006, math/0608576.

[30]  Surajit Ray,et al.  A Nonparametric Statistical Approach to Clustering via Mode Identification , 2007, J. Mach. Learn. Res..

[31]  Zhao Chen,et al.  Polynomial spline estimation for partial functional linear regression models , 2016, Comput. Stat..

[32]  C. J. Stone,et al.  Optimal Rates of Convergence for Nonparametric Estimators , 1980 .

[33]  T. Hsing,et al.  Theoretical foundations of functional data analysis, with an introduction to linear operators , 2015 .

[34]  Huiming Zhu,et al.  Robust variable selection in partially varying coefficient single-index model , 2015 .

[35]  P. Sarda,et al.  SPLINE ESTIMATORS FOR THE FUNCTIONAL LINEAR MODEL , 2003 .