Robust Estimation for Partial Functional Linear Regression Model Based on Modal Regression
暂无分享,去创建一个
Ping Yu | Jianhong Shi | Zhongyi Zhu | Xikai Ai | Zhongyi Zhu | Jianhong Shi | P. Yu | Xikai Ai
[1] James O. Ramsay,et al. Applied Functional Data Analysis: Methods and Case Studies , 2002 .
[2] T. Fearn,et al. Bayesian Wavelet Regression on Curves With Application to a Spectroscopic Calibration Problem , 2001 .
[3] Weihua Zhao,et al. Robust and efficient variable selection for semiparametric partially linear varying coefficient model based on modal regression , 2013, Annals of the Institute of Statistical Mathematics.
[4] Hyejin Shin,et al. Partial functional linear regression , 2009 .
[5] P. Yu,et al. A test of linearity in partial functional linear regression , 2016 .
[6] Zhongzhang Zhang,et al. Varying-coefficient partially functional linear quantile regression models , 2017 .
[7] Masaaki Imaizumi,et al. PCA-based estimation for functional linear regression with functional responses , 2016, J. Multivar. Anal..
[8] Xin Qi,et al. Sparse wavelet regression with multiple predictive curves , 2015, J. Multivar. Anal..
[9] Jane-ling Wang,et al. Functional linear regression analysis for longitudinal data , 2005, math/0603132.
[10] Joel L. Horowitz,et al. Methodology and convergence rates for functional linear regression , 2007, 0708.0466.
[11] Ulrich Stadtmüller,et al. Generalized functional linear models , 2005 .
[12] Piotr Kokoszka,et al. Inference for Functional Data with Applications , 2012 .
[13] W. Yao,et al. A New Regression Model: Modal Linear Regression , 2014 .
[14] Runze Li,et al. Local modal regression , 2012, Journal of nonparametric statistics.
[15] M. Yuan,et al. A Reproducing Kernel Hilbert Space Approach to Functional Linear Regression , 2010, 1211.2607.
[16] Philippe Vieu,et al. Semi-functional partial linear regression , 2006 .
[17] T. Tony Cai,et al. Prediction in functional linear regression , 2006 .
[18] James O. Ramsay,et al. Functional Data Analysis , 2005 .
[19] T. Fearn,et al. Application of near infrared reflectance spectroscopy to the compositional analysis of biscuits and biscuit doughs , 1984 .
[20] E. Parzen. On Estimation of a Probability Density Function and Mode , 1962 .
[21] L. Schumaker. Spline Functions: Basic Theory , 1981 .
[22] André Mas,et al. Functional linear regression with derivatives , 2006 .
[23] Haipeng Shen,et al. Functional Coefficient Regression Models for Non‐linear Time Series: A Polynomial Spline Approach , 2004 .
[24] P. Vieu,et al. Nonparametric Functional Data Analysis: Theory and Practice (Springer Series in Statistics) , 2006 .
[25] Fang Yao,et al. Partially functional linear regression in high dimensions , 2016 .
[26] Zhongyi Zhu,et al. Robust Estimation in Generalized Partial Linear Models for Clustered Data , 2005 .
[27] H. Zou,et al. Composite quantile regression and the oracle Model Selection Theory , 2008, 0806.2905.
[28] Joseph P. Romano. On weak convergence and optimality of kernel density estimates of the mode , 1988 .
[29] A. Boulesteix,et al. Penalized Partial Least Squares with Applications to B-Spline Transformations and Functional Data , 2006, math/0608576.
[30] Surajit Ray,et al. A Nonparametric Statistical Approach to Clustering via Mode Identification , 2007, J. Mach. Learn. Res..
[31] Zhao Chen,et al. Polynomial spline estimation for partial functional linear regression models , 2016, Comput. Stat..
[32] C. J. Stone,et al. Optimal Rates of Convergence for Nonparametric Estimators , 1980 .
[33] T. Hsing,et al. Theoretical foundations of functional data analysis, with an introduction to linear operators , 2015 .
[34] Huiming Zhu,et al. Robust variable selection in partially varying coefficient single-index model , 2015 .
[35] P. Sarda,et al. SPLINE ESTIMATORS FOR THE FUNCTIONAL LINEAR MODEL , 2003 .