Multi-scale query processing in vehicular networks

In the last decade, a number of wireless and small-sized devices (e.g., PDAs, smartphones, sensors, laptops, etc.) with increasing computing capabilities have appeared in the market at very affordable costs. These devices have started to be embedded in modern cars in the form of on-board computers, GPS navigators, or even multimedia centers. Thus, the vehicles can carry useful information, acting as data sources for other vehicles. Recently, some works have addressed the problem of processing queries in such highly dynamic vehicular networks in order to share information between drivers. The proposed query processing techniques usually rely on a push model. Hence, each vehicle receives data from its neighbors and decides whether they are relevant enough to be stored in a local data cache. Then, the data may be used by a query processor to retrieve relevant data for the driver. In this paper, we look at the problem from a broader perspective and discuss the interest of multi-scale query processing techniques in such context. The goal of such techniques is to exploit, at the mobile device’s level, different access modes (e.g., push, pull) and various data sources (e.g., data cached locally, data stored by vehicles nearby, remote Web services, etc.) to provide the users with results for their queries. We highlight the most important challenges and outline some possible approaches. We also present a prototype of a first query evaluator developed using the Microsoft LINQ API.

[1]  Nectaria Tryfona,et al.  Spatio-Temporal Databases: The CHOROCHRONOS Approach , 2003 .

[2]  Víctor Cuevas-Vicenttín Towards multi-scale query processing , 2008, 2008 IEEE 24th International Conference on Data Engineering Workshop.

[3]  Apostolos Malatras Pervasive Computing and Communications Design and Deployment: Technologies, Trends and Applications , 2011 .

[4]  Yingjie He,et al.  Query processing for mobile wireless sensor networks: State-of-the-art and research challenges , 2008, 2008 3rd International Symposium on Wireless Pervasive Computing.

[5]  Roy T. Fielding,et al.  Principled design of the modern Web architecture , 2000, Proceedings of the 2000 International Conference on Software Engineering. ICSE 2000 the New Millennium.

[6]  Yu-Chee Tseng,et al.  Vehicular Sensing System for CO 2 Monitoring Applications , 2009 .

[7]  Martin Nilsson,et al.  Investigating the energy consumption of a wireless network interface in an ad hoc networking environment , 2001, Proceedings IEEE INFOCOM 2001. Conference on Computer Communications. Twentieth Annual Joint Conference of the IEEE Computer and Communications Society (Cat. No.01CH37213).

[8]  Aris M. Ouksel,et al.  Distributed databases and peer-to-peer databases: past and present , 2008, SGMD.

[9]  Jing Zhao,et al.  Roadcast: A Popularity Aware Content Sharing Scheme in VANETs , 2009, ICDCS.

[10]  Jörg Ott,et al.  Drive-thru Internet: IEEE 802.11b for "automobile" users , 2004, IEEE INFOCOM 2004.

[11]  Robert Tappan Morris,et al.  ExOR: opportunistic multi-hop routing for wireless networks , 2005, SIGCOMM '05.

[12]  Jean-Pierre Hubaux,et al.  A Survey of Research in Inter-Vehicle Communications , 2006 .

[13]  Leonard Barolli,et al.  Performance analysis of multi-hop ad-hoc network using multi-flow traffic for indoor scenarios , 2010, J. Ambient Intell. Humaniz. Comput..

[14]  Matthias Baldauf,et al.  A survey on context-aware systems , 2007, Int. J. Ad Hoc Ubiquitous Comput..

[15]  Evaggelia Pitoura,et al.  Data Management for Mobile Computing , 1997, The Kluwer International Series on Advances in Database Systems.

[16]  Tomasz Imielinski,et al.  Data management for mobile computing , 1993, SGMD.

[17]  Ayse Basar Bener,et al.  Mobile Web services: a new agent-based framework , 2006, IEEE Internet Computing.

[18]  Liviu Iftode,et al.  RoadSpeak: enabling voice chat on roadways using vehicular social networks , 2008, SocialNets '08.

[19]  Tomasz Imielinski,et al.  Mobile Computing , 1996 .

[20]  Lars Kulik,et al.  Information Dissemination in Mobile Ad-Hoc Geosensor Networks , 2004, GIScience.

[21]  Mario Gerla,et al.  FleaNet: A Virtual Market Place on Vehicular Networks , 2010, IEEE Trans. Veh. Technol..

[22]  Heng Tao Shen,et al.  Hybrid Retrieval Mechanisms in Vehicle-Based P2P Networks , 2009, ICCS.

[23]  Bo Xu,et al.  In-network query processing in mobile P2P databases , 2009, GIS.

[24]  Aris M. Ouksel,et al.  Opportunistic resource exchange in inter-vehicle ad-hoc networks , 2004, IEEE International Conference on Mobile Data Management, 2004. Proceedings. 2004.

[25]  Gregor von Bochmann,et al.  Pushing quality of service information and requirements into global query optimization , 2003, Seventh International Database Engineering and Applications Symposium, 2003. Proceedings..

[26]  Thierry Delot,et al.  Vehicular event sharing with a mobile peer-to-peer architecture , 2010 .

[27]  John H. Hartman,et al.  WSN01-4: Efficient and Robust Query Processing for Mobile Wireless Sensor Networks , 2006, IEEE Globecom 2006.

[28]  Thierry Delot,et al.  Evaluating Location Dependent Queries Using ISLANDS , 2004, ISSADS.

[29]  Eduardo Mena,et al.  Location-dependent query processing: Where we are and where we are heading , 2010, CSUR.

[30]  Diomidis Spinellis,et al.  A survey of peer-to-peer content distribution technologies , 2004, CSUR.

[31]  Eduardo Mena,et al.  Using Hitchhiker Mobile Agents for Environment Monitoring , 2009, PAAMS.

[32]  Maurizio Lenzerini,et al.  Data integration: a theoretical perspective , 2002, PODS.

[33]  Jennifer Widom,et al.  The CQL continuous query language: semantic foundations and query execution , 2006, The VLDB Journal.

[34]  Jason B. Ernst,et al.  Data ubiquity in autonomic wireless mesh networks , 2010, J. Ambient Intell. Humaniz. Comput..

[35]  Daniel Barbará,et al.  Mobile Computing and Databases - A Survey , 1999, IEEE Trans. Knowl. Data Eng..

[36]  Tomasz Imielinski,et al.  Mobile Wireless Computing: Solutions and Challenges in Data Management , 1993 .

[37]  Donald Kossmann,et al.  The state of the art in distributed query processing , 2000, CSUR.

[38]  B. Scheuermann,et al.  The feasibility of information dissemination in vehicular ad-hoc networks , 2007, 2007 Fourth Annual Conference on Wireless on Demand Network Systems and Services.

[39]  Eduardo Mena,et al.  Mobile Agents in Vehicular Networks: Taking a First Ride , 2010, PAAMS.

[40]  Sylvain Lecomte,et al.  Adaptive query processing in mobile environment , 2005, MPAC '05.

[41]  Eduardo Mena,et al.  Location-dependent queries in mobile contexts: distributed processing using mobile agents , 2006, IEEE Transactions on Mobile Computing.

[42]  Cristina Nita-Rotaru,et al.  A survey of attack and defense techniques for reputation systems , 2009, CSUR.

[43]  Stephan Olariu,et al.  Vehicular Networks: From Theory to Practice , 2009 .

[44]  Tomasz Imielinski,et al.  Wireless Graffiti - Data, Data Everywhere Matters , 2002, VLDB.

[45]  Martin Mauve,et al.  A routing strategy for vehicular ad hoc networks in city environments , 2003, IEEE IV2003 Intelligent Vehicles Symposium. Proceedings (Cat. No.03TH8683).

[46]  Margaret H. Dunham,et al.  Location dependent query processing , 2001, MobiDe '01.

[47]  Irfan-Ullah Awan,et al.  Energy efficient clustering protocol to enhance lifetime of wireless sensor network , 2010, J. Ambient Intell. Humaniz. Comput..

[48]  Vikram Srinivasan,et al.  PeopleNet: engineering a wireless virtual social network , 2005, MobiCom '05.

[49]  Cecilia Mascolo,et al.  Persistent content-based information dissemination in hybrid vehicular networks , 2009, 2009 IEEE International Conference on Pervasive Computing and Communications.