Investigating the Diameter and Height Models of Beech Trees in Uneven Age Forest of Northern Iran (Case study: Forest Farim)

[1]  Nova D. Doyog,et al.  Fitting and evaluation of height-diameter models for Alnus japonica in La Trinidad, Benguet, Philippines , 2018, Journal of Mountain Science.

[2]  Zhaojun Li,et al.  Generalized nonlinear height–diameter models for a Cryptomeria fortunei plantation in the Pingba region of Guizhou Province, China , 2018 .

[3]  R. I. Lumbres,et al.  Comparison of stem taper models for the four tropical tree species in Mount Makiling, Philippines , 2016, Journal of Mountain Science.

[4]  Lauri Mehtätalo,et al.  Modeling height-diameter curves for prediction , 2015 .

[5]  K. Eerikäinen,et al.  Subject-Specific Prediction Using a Nonlinear Mixed Model: Consequences of Different Approaches , 2015 .

[6]  H. Temesgen,et al.  Modelling tree height–diameter relationships in multi-species and multi-layered forests: A large observational study from Northeast China , 2014 .

[7]  Xiongqing Zhang,et al.  Estimating Tree Height-Diameter Models with the Bayesian Method , 2014, TheScientificWorldJournal.

[8]  J. Fernández-Martínez,et al.  Tree height prediction approaches for uneven-aged beech forests in northwestern Spain , 2013 .

[9]  Maria J. Diamantopoulou,et al.  Estimating Crimean juniper tree height using nonlinear regression and artificial neural network models , 2013 .

[10]  M. Tomé,et al.  Nonlinear fixed and random generalized height–diameter models for Portuguese cork oak stands , 2011, Annals of Forest Science.

[11]  L. Mehtätalo Height-diameter models for Scots pine and birch in Finland , 2005 .

[12]  Mahadev Sharma,et al.  Height–Diameter Models Using Stand Characteristics for Pinus banksiana and Picea mariana , 2004 .

[13]  Lauri Mehtätalo,et al.  A longitudinal height-diameter model for Norway spruce in Finland , 2004 .

[14]  J. G. González,et al.  A height-diameter model for Pinus radiata D. Don in Galicia (Northwest Spain) , 2003 .

[15]  J. Flewelling,et al.  Considerations in simultaneous curve fitting for repeated height–diameter measurements , 1994 .

[16]  Douglas P. Wiens,et al.  Comparison of nonlinear height–diameter functions for major Alberta tree species , 1992 .

[17]  E. Sibbesen SOME NEW EQUATIONS TO DESCRIBE PHOSPHATE SORPTION BY SOILS , 1981 .

[18]  F. J. Richards A Flexible Growth Function for Empirical Use , 1959 .

[19]  W. Weibull A Statistical Distribution Function of Wide Applicability , 1951 .

[20]  R. Pearl,et al.  On the Rate of Growth of the Population of the United States since 1790 and Its Mathematical Representation. , 1920, Proceedings of the National Academy of Sciences of the United States of America.