Subretinal Artificial Silicon Retina Microchip Implantation in Retinitis Pigmentosa

Retinitis pigmentosa (RP) is a progressive condition that causes both central and peripheral vision loss ((1)–(3)). This genetically diverse disease presents with a variable phenotypic onset, but eventually affects both eyes. No treatment is effective in restoring vision once it is lost. Although, a variety of patterns can be observed, vision loss typically occurs first in the midperiphery and progresses to involve the peripheral and finally, the central visual fields creating a funduscopic pattern of pigmented “bone spicules.”

[1]  B Rosner,et al.  Natural course of retinitis pigmentosa over a three-year interval. , 1985, American journal of ophthalmology.

[2]  E. Zrenner,et al.  Can subretinal microphotodiodes successfully replace degenerated photoreceptors? , 1999, Vision Research.

[3]  L. Akkermans,et al.  Electrical stimulation of bone growth with direct current. , 1986, Clinical orthopaedics and related research.

[4]  Richard L. Sidman,et al.  INHERITED RETINAL DYSTROPHY IN THE RAT , 1962, The Journal of cell biology.

[5]  A. Y. Chow,et al.  Subretinal semiconductor microphotodiode array. , 1998, Ophthalmic surgery and lasers.

[6]  R. H. Propst,et al.  Visual perception elicited by electrical stimulation of retina in blind humans. , 1996, Archives of ophthalmology.

[7]  M. Lavail,et al.  Injury-induced upregulation of bFGF and CNTF mRNAS in the rat retina , 1995 .

[8]  A. M. Potts,et al.  The electrically evoked response of the visual system (EER). 3. Further contribution to the origin of the EER. , 1970, Investigative ophthalmology.

[9]  R. Carpenter,et al.  Electrical stimulation of the human eye in different adaptational states , 1972, The Journal of physiology.

[10]  S. T. G. Roup,et al.  DEEP-BRAIN STIMULATION OF THE SUBTHALAMIC NUCLEUS OR THE PARS INTERNA OF THE GLOBUS PALLIDUS IN PARKINSON'S DISEASE , 2001 .

[11]  A. Y. Chow,et al.  Implantation of silicon chip microphotodiode arrays into the cat subretinal space , 2001, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[12]  W W Dawson,et al.  The electrical stimulation of the retina by indwelling electrodes. , 1977, Investigative ophthalmology & visual science.

[13]  A. M. Potts,et al.  The electrically evoked response (EER) of the visual system. II. Effect of adaptation and retinitis pigmentosa. , 1969, Investigative ophthalmology.

[14]  M. Lavail,et al.  Protection of mouse photoreceptors by survival factors in retinal degenerations. , 1998, Investigative ophthalmology & visual science.

[15]  A. Y. Chow,et al.  Subretinal electrical stimulation of the rabbit retina , 1997, Neuroscience Letters.

[16]  T. Léveillard,et al.  Glial cell line-derived neurotrophic factor induces histologic and functional protection of rod photoreceptors in the rd/rd mouse. , 1999, Investigative ophthalmology & visual science.

[17]  B. Hoefflinger,et al.  The development of subretinal microphotodiodes for replacement of degenerated photoreceptors. , 1997, Ophthalmic research.

[18]  R. Snyder,et al.  Chronic intracochlear electrical stimulation induces selective survival of spiral ganglion neurons in neonatally deafened cats , 1991, Hearing Research.

[19]  A. Y. Chow,et al.  Subretinal implantation of semiconductor-based photodiodes: progress and challenges. , 1999, Journal of rehabilitation research and development.

[20]  M. Kelley,et al.  Growth factors in the treatment of degenerative retinal disorders. , 1996, Ciba Foundation symposium.

[21]  J. Flannery,et al.  Degenerative changes in a retina affected with autosomal dominant retinitis pigmentosa. , 1989, Investigative ophthalmology & visual science.

[22]  R. Linden,et al.  BDNF and NT‐4 differentially modulate neurite outgrowth in developing retinal ganglion cells , 1999, Journal of neuroscience research.

[23]  R. Andrews Neuroprotection for the New Millennium , 2001, Annals of the New York Academy of Sciences.

[24]  G. Nikkhah,et al.  Subthalamic Nucleus Lesions Are Neuroprotective against Terminal 6-OHDA-Induced Striatal Lesions and Restore Postural Balancing Reactions , 2001, Experimental Neurology.

[25]  P. Krack,et al.  Deep-brain stimulation of the subthalamic nucleus or the pars interna of the globus pallidus in Parkinson's disease. , 2001, The New England journal of medicine.

[26]  A. Milam,et al.  Preservation of the inner retina in retinitis pigmentosa. A morphometric analysis. , 1997, Archives of ophthalmology.

[27]  G. Brindley,et al.  The site of electrical excitation of the human eye , 1955, The Journal of physiology.

[28]  M. Zanakis,et al.  Short term efficacy of applied electric fields in the repair of the damaged rodent spinal cord: behavioral and morphological results. , 1988, Neurosurgery.

[29]  A. Y. Chow,et al.  Immunohistochemical studies of the retina following long-term implantation with subretinal microphotodiode arrays. , 2001, Experimental eye research.

[30]  A. Y. Chow,et al.  The Subretinal Microphotodiode Array Retinal Prosthesis , 1998, Ophthalmic Research.

[31]  A. M. Potts,et al.  The electrically evoked response of the visual system (EER). , 1968, Investigative Ophthalmology.

[32]  W. Kane,et al.  Direct Current Electrical Bone Growth Stimulation for Spinal Fusion , 1988, Spine.

[33]  Knighton Rw,et al.  An electrically evoked slow potential of the frog's retina. I. Properties of response. , 1975 .

[34]  R. Snyder,et al.  Chronic electrical stimulation by a cochlear implant promotes survival of spiral ganglion neurons after neonatal deafness , 1999, The Journal of comparative neurology.