Physiologic measurements by contrast‐enhanced MR imaging: Expectations and limitations

Contrast‐enhanced magnetic resonance imaging (MRI) offers the opportunity to quantitatively assess physiologic properties of tissue, such as perfusion, blood volume, and capillary permeability. Use of such quantitation potentially allows tissues to be characterized in terms of pathophysiology and to be monitored over time, during the course of therapeutic intervention. The degree to which such quantitation is applicable relies heavily on simplified model descriptions of the tissue space and assumptions relating the signal intensity observed to the contrast agent concentration. This article presents a perspective on the use of quantitative contrast‐enhanced MRI, analysis of the accuracy of derived physiologic parameters, and recommendations for pulse sequence choice.

[1]  R. Weissleder,et al.  Contrast enhancement in experimental radiation‐induced liver injury: Comparison of hepatocellular and reticuloendothelial particulate contrast agents , 1996, Journal of magnetic resonance imaging : JMRI.

[2]  B. Rosen,et al.  Perfusion imaging with NMR contrast agents , 1990, Magnetic resonance in medicine.

[3]  A. Haase,et al.  Snapshot flash mri. applications to t1, t2, and chemical‐shift imaging , 1990, Magnetic resonance in medicine.

[4]  R R Edelman,et al.  Echo-planar MR imaging. , 1994, Radiology.

[5]  K. B. Larson,et al.  Simultaneous MR Acquisition of Arterial and Brain Signal‐Time Curves , 1992, Magnetic resonance in medicine.

[6]  J. Folkman Angiogenesis in cancer, vascular, rheumatoid and other disease , 1995, Nature Medicine.

[7]  P. Gowland,et al.  Dynamic studies of gadolinium uptake in brain tumors using inversion‐recovery echo‐planar imaging , 1992, Magnetic resonance in medicine.

[8]  B. Rosen,et al.  Susceptibility contrast imaging of cerebral blood volume: Human experience , 1991, Magnetic resonance in medicine.

[9]  P. Tofts,et al.  Measurement of the blood‐brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts , 1991, Magnetic resonance in medicine.

[10]  M Recht,et al.  Method for the quantitative assessment of contrast agent uptake in dynamic contrast‐enhanced MRI , 1994, Magnetic resonance in medicine.

[11]  M E Moseley,et al.  Echo-planar perfusion-sensitive MR imaging of acute cerebral ischemia. , 1993, Radiology.

[12]  D M Shames,et al.  Mammary carcinoma model: correlation of macromolecular contrast-enhanced MR imaging characterizations of tumor microvasculature and histologic capillary density. , 1996, Radiology.

[13]  R. Brasch,et al.  Rationale and applications for macromolecular Gd‐based contrast agents , 1991, Magnetic resonance in medicine.

[14]  D. Le Bihan,et al.  Magnetic resonance imaging of perfusion , 1990 .

[15]  J. Kucharczyk,et al.  Contrast‐enhanced perfusion‐sensitive MR imaging in the diagnosis of cerebrovascular disorders , 1993, Journal of magnetic resonance imaging : JMRI.

[16]  A. Trotman‐Dickenson,et al.  ‘Comprehensive’ Inorganic Chemistry , 1958, Nature.

[17]  R. Turner,et al.  Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[18]  J W Belliveau,et al.  Functional cerebral imaging by susceptibility‐contrast NMR , 1990, Magnetic resonance in medicine.

[19]  A. Nobre,et al.  Qualitative mapping of cerebral blood flow and functional localization with echo-planar MR imaging and signal targeting with alternating radio frequency. , 1994, Radiology.

[20]  B R Rosen,et al.  Dynamic Gd‐DTPA enhanced MRI measurement of tissue cell volume fraction , 1995, Magnetic resonance in medicine.

[21]  P. Mansfield Multi-planar image formation using NMR spin echoes , 1977 .

[22]  L R Schad,et al.  Pharmacokinetic parameters in CNS Gd-DTPA enhanced MR imaging. , 1991, Journal of computer assisted tomography.

[23]  W J Manning,et al.  Studies of Gd‐DTPA relaxivity and proton exchange rates in tissue , 1994, Magnetic resonance in medicine.

[24]  P. S. Tofts,et al.  Rapid Measurement of Capillary Permeability Using the Early Part of the Dynamic Gd-DTPA MRI Enhancement Curve , 1993 .

[25]  O Henriksen,et al.  Quantitation of blood‐brain barrier defect by magnetic resonance imaging and gadolinium‐DTPA in patients with multiple sclerosis and brain tumors , 1990, Magnetic resonance in medicine.

[26]  M E Moseley,et al.  High-Speed MR Imaging of Ischemic Brain Injury following Stenosis of the Middle Cerebral Artery , 1993, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[27]  K. B. Larson,et al.  Tracer-kinetic analysis for measuring regional cerebral blood flow by dynamic nuclear magnetic resonance imaging. , 1994, Journal of theoretical biology.

[28]  R. Brasch,et al.  Tumor angiography using high-resolution, three-dimensional magnetic resonance imaging: comparison of gadopentetate dimeglumine and a macromolecular blood-pool contrast agent. , 1995, Academic radiology.

[29]  O. Nalcioglu,et al.  Regional comparison of tumor vascularity and permeability parameters measured by albumin‐GD‐DTPA and GD‐DTPA , 1995, Magnetic resonance in medicine.

[30]  F Demsar,et al.  Angiographic properties of Gd-DTPA-24-cascade-polymer--a new macromolecular MR contrast agent. , 1995, European journal of radiology.

[31]  B. Rosen,et al.  Dynamic imaging with lanthanide chelates in normal brain: Contrast due to magnetic susceptibility effects , 1988, Magnetic resonance in medicine.

[32]  H. Genant,et al.  Musculoskeletal neoplasm: perineoplastic edema versus tumor on dynamic postcontrast MR images with spatial mapping of instantaneous enhancement rates. , 1995, Radiology.

[33]  Cerebrovascular transit characteristics of DyDTPA-BMA and GdDTPA-BMA on normal and ischemic cat brain. , 1993, AJNR. American journal of neuroradiology.

[34]  P. Tofts Optimal detection of blood-brain barrier defects with Gd-DTPA MRI-the influences of delayed imaging and optimised repetition time. , 1996, Magnetic resonance imaging.

[35]  J. Kurhanewicz,et al.  Diffusion-weighted MR imaging of acute stroke: correlation with T2-weighted and magnetic susceptibility-enhanced MR imaging in cats. , 1990, AJNR. American journal of neuroradiology.

[36]  B. Siewert,et al.  Acute human stroke studied by whole brain echo planar diffusion‐weighted magnetic resonance imaging , 1995, Annals of neurology.

[37]  P S Tofts,et al.  Quantitative Analysis of Dynamic Gd‐DTPA Enhancement in Breast Tumors Using a Permeability Model , 1995, Magnetic resonance in medicine.

[38]  R Weissleder,et al.  Superparamagnetic iron oxide: pharmacokinetics and toxicity. , 1989, AJR. American journal of roentgenology.

[39]  R. Brasch,et al.  Quantification of liver blood volume: comparison of ultra short ti inversion recovery echo planar imaging (ulstir‐epi), with dynamic 3d‐gradient recalled echo imaging , 1995, Magnetic resonance in medicine.

[40]  P. Gowland,et al.  Accurate measurement of T1 in vivo in less than 3 seconds using echo‐planar imaging , 1993, Magnetic resonance in medicine.

[41]  R. Weissleder,et al.  Polymeric contrast agents for MR imaging of adrenal glands , 1993, Journal of magnetic resonance imaging : JMRI.

[42]  D M Shames,et al.  Measurement of capillary permeability to macromolecules by dynamic magnetic resonance imaging: A quantitative noninvasive technique , 1993, Magnetic resonance in medicine.

[43]  J. Kucharczyk,et al.  Early detection of regional cerebral ischemia in cats: Comparison of diffusion‐ and T2‐weighted MRI and spectroscopy , 1990, Magnetic resonance in medicine.

[44]  T. Frenzel,et al.  Characterization of a gadolinium‐labeled cholesterol derivative as an organ‐specific contrast agent for adrenal MR imaging , 1995, Journal of magnetic resonance imaging : JMRI.

[45]  D. Le Bihan,et al.  Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. , 1988, Radiology.

[46]  R. Brasch,et al.  Contrast-enhanced MR imaging assessment of tumor capillary permeability: effect of irradiation on delivery of chemotherapy. , 1996, Radiology.

[47]  P. Grenier,et al.  MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. , 1986, Radiology.

[48]  T. Roberts,et al.  Early detection of acute tubular injury with diffusion-weighted magnetic resonance imaging in a rat model of myohemoglobinuric acute renal failure. , 1996, Renal failure.

[49]  J. Tsuruda,et al.  Cytotoxic brain edema: assessment with diffusion-weighted MR imaging. , 1992, Radiology.