Global warming potentials and radiative efficiencies of halocarbons and related compounds: A comprehensive review

In the mid‐1970s, it was recognized that chlorofluorocarbons (CFCs) were strong greenhouse gases that could have substantial impacts on radiative forcing of climate change, as well as being substances that deplete stratospheric ozone. Around a decade later, this group of radiatively active compounds was expanded to include a large number of replacements for ozone‐depleting substances such as chlorocarbons, hydrochlorocarbons, hydrochlorofluorocarbons (HCFCs), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), bromofluorocarbons, and bromochlorofluorocarbons. This paper systematically reviews the published literature concerning the radiative efficiencies (REs) of CFCs, bromofluorocarbons and bromochlorofluorocarbons (halons), HCFCs, HFCs, PFCs, sulfur hexafluoride, nitrogen trifluoride, and related halogen containing compounds. In addition, we provide a comprehensive and self‐consistent set of new calculations of REs and global warming potentials (GWPs) for these compounds, mostly employing atmospheric lifetimes taken from the available literature. We also present global temperature change potentials for selected gases. Infrared absorption spectra used in the RE calculations were taken from databases and individual studies and from experimental and ab initio computational studies. Evaluations of REs and GWPs are presented for more than 200 compounds. Our calculations yield REs significantly (> 5%) different from those in the Intergovernmental Panel on Climate Change Fourth Assessment Report (AR4) for 49 compounds. We present new RE values for more than 100 gases which were not included in AR4. A widely used simple method to calculate REs and GWPs from absorption spectra and atmospheric lifetimes is assessed and updated. This is the most comprehensive review of the radiative efficiencies and global warming potentials of halogenated compounds performed to date.

[1]  V. L. Orkin,et al.  Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies: Evaluation Number 18 , 2015 .

[2]  L. Kaltenegger Absorption Cross Section , 2014 .

[3]  Revised UV absorption spectra, ozone depletion potentials, and global warming potentials for the ozone‐depleting substances CF2Br2, CF2ClBr, and CF2BrCF2Br , 2013 .

[4]  E. Fleming,et al.  NF3: UV absorption spectrum temperature dependence and the atmospheric and climate forcing implications , 2013 .

[5]  Zhang Hua Radiative Forcing and Global Warming Potentials of CH_4 and N_2O , 2013 .

[6]  P. Bernath,et al.  Stratospheric loss and atmospheric lifetimes of CFC-11 and CFC-12 derived from satellite observations , 2012 .

[7]  A. Keil,et al.  Observation-based assessment of stratospheric fractional release, lifetimes, and ozone depletion potentials of ten important source gases , 2012 .

[8]  Brian C. O'Neill,et al.  A unifying framework for metrics for aggregating the climate effect of different emissions , 2012 .

[9]  Kimberly Strong,et al.  Measurements of the infrared absorption cross-sections of HCFC-141b (CH3CFCl2) , 2012 .

[10]  R. Weiss,et al.  Re-evaluation of the lifetimes of the major CFCs and CH 3 CCl 3 using atmospheric trends , 2012 .

[11]  G. Peters,et al.  The impact of model variation in CO2 and temperature impulse response functions on emission metrics , 2012 .

[12]  R. Prinn,et al.  Global emission estimates and radiative impact of C 4 F 10 , C 5 F 12 , C 6 F 14 , C 7 F 16 and C 8 F 18 , 2012 .

[13]  Ian G. Enting,et al.  Carbon dioxide and climate impulse response functions for the computation of greenhouse gas metrics:a multi-model analysis , 2012 .

[14]  Global emission estimates and radiative impact of C[subscript 4]F[subscript 10], C[subscript 5]F[subscript 12], C[subscript 6]F[subscript 14], C[subscript 7]F[subscript 16] and C[subscript 8]F[subscript 18] , 2012 .

[15]  A. Maycock,et al.  Stratospheric water vapor and climate: sensitivity to the representation in radiation codes , 2012 .

[16]  Olivier Boucher,et al.  Comparison of physically- and economically-based CO 2 -equivalences for methane , 2012 .

[17]  Michael J. Prather,et al.  Reactive greenhouse gas scenarios: Systematic exploration of uncertainties and the role of atmospheric chemistry , 2012 .

[18]  O. Nielsen,et al.  Assessing the Impact on Global Climate from General Anesthetic Gases , 2012, Anesthesia and analgesia.

[19]  O. Nielsen,et al.  Atmospheric chemistry of CxF2x+1CHCH2 (x = 1, 2, 4, 6 and 8): Radiative efficiencies and global warming potentials , 2012 .

[20]  Timothy Shippert,et al.  The Continual Intercomparison of Radiation Codes: Results from Phase I , 2012 .

[21]  M. Antiñolo,et al.  Photochemistry of CF3(CH2)2CHO in air: UV absorption cross sections between 230 and 340 nm and photolysis quantum yields at 308 nm , 2012 .

[22]  Sergio A. González,et al.  Laboratory studies of CHF2CF2CH2OH and CF3CF2CH2OH: UV and IR absorption cross sections and OH rate coefficients between 263 and 358 K. , 2012, The journal of physical chemistry. A.

[23]  Atmospheric chemistry of CF3CH2OCH3: Reaction with chlorine atoms and OH radicals, kinetics, degradation mechanism and global warming potential , 2012 .

[24]  Global emission estimates and radiative impact of C4F10, C5F12, , 2012 .

[25]  Glen P. Peters,et al.  The integrated global temperature change potential (iGTP) and relationships between emission metrics , 2011 .

[26]  V. M. Devi,et al.  The 2009 edition of the GEISA spectroscopic database , 2011 .

[27]  G. Marston,et al.  Radiative efficiencies for fluorinated esters: indirect global warming potentials of hydrofluoroethers. , 2011, Physical chemistry chemical physics : PCCP.

[28]  A. Ravishankara,et al.  Atmospheric chemistry of (Z)-CF3CH═CHCF3: OH radical reaction rate coefficient and global warming potential. , 2011, The journal of physical chemistry. A.

[29]  M. Antiñolo,et al.  UV absorption cross sections between 230 and 350 nm and pressure dependence of the photolysis quantum yield at 308 nm of CF3CH2CHO. , 2011, Physical chemistry chemical physics : PCCP.

[30]  K. Shine,et al.  Radiative efficiencies and global warming potentials using theoretically determined absorption cross-sections for several hydrofluoroethers (HFEs) and hydrofluoropolyethers (HFPEs) , 2011 .

[31]  B. Mayer,et al.  Evaluation of radiation scheme performance within chemistry climate models , 2011 .

[32]  K. Strong,et al.  Mid-infrared absorption cross-sections and temperature dependence of CFC-113 , 2011 .

[33]  Malte Meinshausen,et al.  Future changes in global warming potentials under representative concentration pathways , 2011 .

[34]  Atmospheric chemistry of C2F5CH2OCH3 (HFE-365mcf). , 2011, Physical chemistry chemical physics : PCCP.

[35]  O. Nielsen,et al.  Erratum: Inhalation anaesthetics and climate change (British Journal of Anaesthesia (2010) 105 (760-766) DOI: 10.1093/bja/aeq259) , 2011 .

[36]  Hua Zhang,et al.  Radiative forcing and global warming potential of perfluorocarbons and sulfur hexafluoride , 2011 .

[37]  P. Jöckel,et al.  Small Interannual Variability of Global Atmospheric Hydroxyl , 2011, Science.

[38]  Hua Zhang,et al.  A study of the radiative forcing and global warming potentials of hydrofluorocarbons , 2011 .

[39]  Daniel J.A. Johansson,et al.  Economics- and physical-based metrics for comparing greenhouse gases , 2011, Climatic Change.

[40]  Kirstin Krüger,et al.  Scientific Assessment of Ozone Depletion: 2010, Global Ozone Research and Monitoring Project-Report No. 52 , 2011 .

[41]  I. Isaksen,et al.  Estimation of Arctic O3 loss during winter 2006/2007 using data assimilation and comparison with a chemical transport model , 2011 .

[42]  M. Roizen Global Warming Potential of Inhaled Anesthetics: Application to Clinical Use , 2011 .

[43]  K. Smith,et al.  Infrared absorption spectra, radiative efficiencies, and global warming potentials of perfluorocarbons: Comparison between experiment and theory , 2010 .

[44]  R. Taccone,et al.  Kinetic study of OH radical reactions with CF3CCl=CCl2, CF3CCl=CClCF3 and CF3CF=CFCF3. , 2010, Chemphyschem : a European journal of chemical physics and physical chemistry.

[45]  M. Antiñolo,et al.  Atmospheric lifetimes and global warming potentials of CF3CH2CH2OH and CF3(CH2)2CH2OH. , 2010, Chemphyschem : a European journal of chemical physics and physical chemistry.

[46]  O. Nielsen,et al.  Atmospheric chemistry of HCF2O(CF2CF2O)xCF2H (x=2-4): kinetics and mechanisms of the chlorine-atom-initiated oxidation. , 2010, Chemphyschem : a European journal of chemical physics and physical chemistry.

[47]  T J Wallington,et al.  Inhalation anaesthetics and climate change. , 2010, British journal of anaesthesia.

[48]  Robert Sausen,et al.  Transport impacts on atmosphere and climate , 2010 .

[49]  David S. Lee,et al.  Transport impacts on atmosphere and climate: Metrics , 2010 .

[50]  O. Nielsen,et al.  Relative integrated IR absorption in the atmospheric window is not the same as relative radiative efficiency , 2010, Proceedings of the National Academy of Sciences.

[51]  N. Tasinato,et al.  Spectroscopic study of CHBrF(2) up to 9500 cm(-1): Vibrational analysis, integrated band intensities, and ab initio calculations. , 2010, The Journal of chemical physics.

[52]  Claus Nielsen,et al.  Global Warming Potential of Inhaled Anesthetics: Application to Clinical Use , 2010, Anesthesia and analgesia.

[53]  H. Damon Matthews,et al.  Accounting for carbon cycle feedbacks in a comparison of the global warming effects of greenhouse gases , 2010 .

[54]  Malte Meinshausen,et al.  Uncertainties of global warming metrics: CO2 and CH4 , 2010 .

[55]  W. Landman Climate change 2007: the physical science basis , 2010 .

[56]  M. Prather,et al.  Correction to “NF3, the greenhouse gas missing from Kyoto” , 2010 .

[57]  Kevin M. Smith,et al.  Atmospheric chemistry of C4F9OC2H5 (HFE-7200), C4F9OCH3 (HFE-7100), C3F7OCH3 (HFE-7000) and C3F7CH2OH: temperature dependence of the kinetics of their reactions with OH radicals, atmospheric lifetimes and global warming potentials. , 2010, Physical chemistry chemical physics : PCCP.

[58]  Timothy J. Lee,et al.  Design strategies to minimize the radiative efficiency of global warming molecules , 2010, Proceedings of the National Academy of Sciences.

[59]  V. L. Orkin,et al.  High-accuracy measurements of OH reaction rate constants and IR absorption spectra: CH2=CF-CF3 and trans-CHF=CH-CF3. , 2010, The journal of physical chemistry. A.

[60]  B. Finlayson‐Pitts,et al.  Atmospheric Chemistry , 2010, Proceedings of the National Academy of Sciences.

[61]  CHF2OCHF2 (HFE-134): IR spectrum and kinetics and products of the chlorine-atom-initiated oxidation. , 2010, The journal of physical chemistry. A.

[62]  A. Ravishankara,et al.  Rate coefficients for the gas-phase reaction of the hydroxyl radical with CH2=CHF and CH2=CF2. , 2010, The journal of physical chemistry. A.

[63]  K. Strong,et al.  Temperature-dependent absorption cross-sections of HCFC-142b , 2010 .

[64]  A. Ravishankara,et al.  Rate coefficients for the reactions of OH with n‐propanol and iso‐propanol between 237 and 376 K , 2010 .

[65]  Kevin M Smith,et al.  HFE-7000 ) and C 3 F 7 CH 2 OH : Temperature dependence of the kinetics of their reactions with OH radicals , atmospheric lifetimes and Global Warming Potentials , 2010 .

[66]  O. Nielsen,et al.  The radiative efficiency of HCF2OCF2OCF2CF2OCF2H (H-Galden 1040x) revisited , 2009 .

[67]  Keith P. Shine,et al.  The global warming potential—the need for an interdisciplinary retrial , 2009 .

[68]  T. Wallington,et al.  Atmospheric chemistry of perfluorobutenes (CF3CFCFCF3 and CF3CF2CFCF2): Kinetics and mechanisms of reactions with OH radicals and chlorine atoms, IR spectra, global warming potentials, and oxidation to perfluorocarboxylic acids , 2009 .

[69]  P. Blowers,et al.  Estimations of global warming potentials from computational chemistry calculations for CH(2)F(2) and other fluorinated methyl species verified by comparison to experiment. , 2009, The journal of physical chemistry. A.

[70]  T. Wallington,et al.  Atmospheric chemistry of CF3CF2H and CF3CF2CF2CF2H: Kinetics and products of gas-phase reactions with Cl atoms and OH radicals, infrared spectra, and formation of perfluorocarboxylic acids , 2009 .

[71]  O. Nielsen,et al.  Atmospheric chemistry of cis-CF3CHCHF: Kinetics of reactions with OH radicals and O3 and products of OH radical initiated oxidation , 2009 .

[72]  Gian-Kasper Plattner,et al.  IPCC Expert Meeting on the Science of Alternative Metrics: Meeting Report , 2009 .

[73]  K. Trenberth,et al.  Earth's Global Energy Budget , 2009 .

[74]  N. Tasinato,et al.  Infrared spectra, integrated band intensities, and anharmonic force field of H2C=CHF. , 2009, The journal of physical chemistry. A.

[75]  D. Blake,et al.  Atmospheric chemistry of sulfuryl fluoride: reaction with OH radicals, Cl atoms and O3, atmospheric lifetime, IR spectrum, and global warming potential. , 2009, Environmental science & technology.

[76]  Timothy J. Lee,et al.  Identifying the molecular origin of global warming. , 2004, The journal of physical chemistry. A.

[77]  Xi WenAn A Study of the Radiative Forcing and Global Warming Potentials of SF_6 , 2009 .

[78]  K. Strong,et al.  Temperature-dependent absorption cross-sections of , 2009 .

[79]  D. Wuebbles,et al.  Metrics for Ozone and Climate: Three-Dimensional Modeling Studies of Ozone Depletion Potentials and Indirect Global Warming Potentials , 2009 .

[80]  R. Weiss,et al.  Experimental and theoretical study of the atmospheric chemistry and global warming potential of SO2F2. , 2008, The journal of physical chemistry. A.

[81]  Atmospheric chemistry of CF3CH2CF2CH3 (HFC-365mfc) : Kinetics and mechanism of chlorine atom initiated oxidation, infrared spectrum, and global warming potential , 2008 .

[82]  O. Nielsen,et al.  Atmospheric chemistry of trans-CF3CHCHCl: Kinetics of the gas-phase reactions with Cl atoms, OH radicals, and O3 , 2008 .

[83]  Rolf Müller,et al.  Envisat MIPAS measurements of CFC-11: retrieval, validation, and climatology , 2008 .

[84]  R. Stolarski,et al.  Relationship of loss, mean age of air and the distribution of CFCs to stratospheric circulation and implications for atmospheric lifetimes , 2008 .

[85]  M. Prather,et al.  NF3, the greenhouse gas missing from Kyoto , 2008 .

[86]  M. Gauß,et al.  Evaluation of the chemical transport model Oslo CTM2 with focus on arctic winter ozone depletion , 2008 .

[87]  N. Tasinato,et al.  Jet-cooled diode laser spectrum and FTIR integrated band intensities of CF3Br: rovibrational analysis of 2ν5 and ν2 + ν3 bands near 9 μm and cross-section measurements in the 450–2500 cm−1 region , 2008 .

[88]  D. Kratz The sensitivity of radiative transfer calculations to the changes in the HITRAN database from 1982 to 2004 , 2008 .

[89]  P. Blowers,et al.  Global warming potential predictions for hydrofluoroethers with two carbon atoms , 2008 .

[90]  Piers M. Forster,et al.  CO2 forcing induces semi‐direct effects with consequences for climate feedback interpretations , 2008 .

[91]  P. Blowers,et al.  Global warming potentials of Hydrofluoroethers. , 2008, Environmental science & technology.

[92]  A. Ravishankara,et al.  CF3CF=CH2 and (Z)-CF3CF=CHF: temperature dependent OH rate coefficients and global warming potentials. , 2008, Physical chemistry chemical physics : PCCP.

[93]  Olivier Boucher,et al.  Climate trade-off between black carbon and carbon dioxide emissions , 2008 .

[94]  M. B. Blanco,et al.  Atmospheric degradation of fluoroesters (FESs): Gas-phase reactivity study towards OH radicals at 298 K , 2007 .

[95]  T. J. Dillon,et al.  The atmospheric chemistry of sulphuryl fluoride, SO 2 F 2 , 2007 .

[96]  O. Nielsen,et al.  Atmospheric chemistry of 2-ethoxy-3,3,4,4,5-pentafluorotetrahydro-2,5-bis[1,2,2,2-tetrafluoro-1-(trifluoromethyl)ethyl]-furan: kinetics, mechanisms, and products of Cl atom and OH radical initiated oxidation. , 2007, Environmental science & technology.

[97]  R. Betts,et al.  Changes in Atmospheric Constituents and in Radiative Forcing. Chapter 2 , 2007 .

[98]  T J Wallington,et al.  Atmospheric chemistry of the Z and E isomers of CF3CF=CHF; kinetics, mechanisms, and products of gas-phase reactions with Cl atoms, OH radicals, and O3. , 2007, The journal of physical chemistry. A.

[99]  P. Blowers,et al.  Prediction of radiative forcing values for hydrofluoroethers using density functional theory methods , 2007 .

[100]  Ole John Nielsen,et al.  Atmospheric chemistry of trans-CF3CHCHF: Kinetics of the gas-phase reactions with Cl atoms, OH radicals, and O3 , 2007 .

[101]  Jan S Fuglestvedt,et al.  Comparing the climate effect of emissions of short- and long-lived climate agents , 2007, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[102]  M. Prather Lifetimes and time scales in atmospheric chemistry , 2007, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[103]  O. Nielsen,et al.  Atmospheric chemistry of CF3CFCH2: Kinetics and mechanisms of gas-phase reactions with Cl atoms, OH radicals, and O3 , 2007 .

[104]  David W. Fahey,et al.  The importance of the Montreal Protocol in protecting climate , 2007, Proceedings of the National Academy of Sciences.

[105]  T. J. Wallington,et al.  Atmospheric chemistry of CF 3 CF @ CH 2 : Kinetics and mechanisms of gas-phase reactions with Cl atoms , OH radicals , and O 3 , 2007 .

[106]  H. L. Miller,et al.  Climate Change 2007: The Physical Science Basis , 2007 .

[107]  Nigel J. Mason,et al.  FTIR spectroscopy and radiative forcing of octafluorocyclobutane and octofluorocyclopentene , 2006 .

[108]  M. Teruel,et al.  CH3OCF2CHFCl and CHF2OCF2CHFCl: Reaction with Cl atoms, atmospheric lifetimes, ozone depletion and global warming potentials , 2006 .

[109]  K. Tokuhashi,et al.  Kinetics and mechanisms of CF3CHFOCH3, CF3CHFOC(O)H, and FC(O)OCH3 reactions with OH radicals. , 2006, The journal of physical chemistry. A.

[110]  T. J. Wallington,et al.  Evaluated kinetic and photochemical data for atmospheric chemistry: Volume IV – gas phase reactions of organic halogen species , 2006 .

[111]  J. Randerson,et al.  Interannual variability in global biomass burning emissions from 1997 to 2004 , 2006 .

[112]  L. K. Gohar,et al.  Radiative forcing by well-mixed greenhouse gases: Estimates from climate models in the Intergovernme , 2006 .

[113]  T. Wallington,et al.  Revised IR spectrum, radiative efficiency and global warming potential of nitrogen trifluoride , 2006 .

[114]  A. Ravishankara,et al.  Rate coefficients for the reactions of OH with CF3CH2CH3 (HFC-263fb), CF3CHFCH2F (HFC-245eb), and CHF2CHFCHF2 (HFC-245ea) between 238 and 375 K. , 2006, The journal of physical chemistry. A.

[115]  FTIR spectroscopy and estimation of the global warming potential of CF3Br and C2F4 , 2006 .

[116]  Cora J Young,et al.  Atmospheric lifetime and global warming potential of a perfluoropolyether. , 2006, Environmental science & technology.

[117]  E. Mahieu,et al.  Line-by-line calculations of thermal infrared radiation representative for global condition : CFC-12 as an example , 2006 .

[118]  O. Nielsen,et al.  Atmospheric chemistry of CxF2x + 1CHCH2 (x = 1, 2, 4, 6, and 8): Kinetics of gas-phase reactions with Cl atoms, OH radicals, and O3 , 2005 .

[119]  Gang Li,et al.  The HITRAN 2008 molecular spectroscopic database , 2005 .

[120]  Klaus Wirtz,et al.  Photolysis study of perfluoro-2-methyl-3-pentanone under natural sunlight conditions. , 2005, Environmental science & technology.

[121]  Timothy J. Wallington,et al.  Gas phase UV and IR absorption spectra of CF3CH2CH2OH and F(CF2CF2)xCH2CH2OH (x = 2, 3, 4) , 2005 .

[122]  K. Tokuhashi,et al.  Henry's law constants of 2,2,2-trifluoroethyl formate, ethyl trifluoroacetate, and non-fluorinated analogous esters , 2005 .

[123]  J. Hansen,et al.  Efficacy of climate forcings , 2005 .

[124]  P. Forster,et al.  Resolution of the uncertainties in the radiative forcing of HFC-134a , 2005 .

[125]  P. Forster,et al.  The Role Of Halocarbons In The Climate Change Of The Troposphere And Stratosphere , 2005 .

[126]  J. Haigh,et al.  Assessment of the impact of SF6 and PFC reservoir tracers on global warming, the AEOLOS study , 2005 .

[127]  Kevin E. Trenberth,et al.  The Mass of the Atmosphere: A Constraint on Global Analyses , 2005 .

[128]  L. K. Gohar,et al.  Perfluorodecalin : global warming potential and first detection in the atmosphere , 2005 .

[129]  J. Fuglestvedt,et al.  Alternatives to the Global Warming Potential for Comparing Climate Impacts of Emissions of Greenhouse Gases , 2005 .

[130]  T. Wallington,et al.  IR spectrum and radiative forcing of CF4 revisited , 2005 .

[131]  S. R. Sellevåg,et al.  Atmospheric chemistry of hydrofluoroethers: Reaction of a series of hydrofluoroethers with OH radicals and Cl atoms, atmospheric lifetimes, and global warming potentials. , 2005, The journal of physical chemistry. A.

[132]  K. Strong,et al.  Gas phase UV and IR absorption spectra of CF 3 CH 2 CH 2 OH and F ( CF 2 CF 2 ) x CH 2 CH 2 OH ( x = 2 , 3 , 4 ) , 2005 .

[133]  Claus J. Nielsen,et al.  Atmospheric gas-phase degradation and global warming potentials of 2-fluoroethanol, 2,2-difluoroethanol, and 2,2,2-trifluoroethanol , 2004 .

[134]  Ole John Nielsen,et al.  Gas phase UV and IR absorption spectra of CxF2x+1CHO (x=1-4) , 2004 .

[135]  Ole John Nielsen,et al.  Atmospheric Chemistry of CF3CFHCF2OCF3 and CF3CFHCF2OCF2H: Reaction with Cl Atoms and OH Radicals, Degradation Mechanism, and Global Warming Potentials , 2004 .

[136]  T. Berntsen,et al.  A global model of the coupled sulfur/oxidant chemistry in the troposphere: The sulfur cycle , 2004 .

[137]  S. R. Sellevåg,et al.  Study of the OH and Cl-initiated oxidation, IR absorption cross-section, radiative forcing, and global warming potential of four C4-hydrofluoroethers. , 2004, Environmental science & technology.

[138]  D. Streets,et al.  A technology‐based global inventory of black and organic carbon emissions from combustion , 2004 .

[139]  Claus J. Nielsen,et al.  A study of the IR and UV-Vis absorption cross-sections, photolysis and OH-initiated oxidation of CF3CHO and CF3CH2CHO , 2004 .

[140]  Ole John Nielsen,et al.  Atmospheric Chemistry of CH3O(CF2CF2O)nCH3(n= 1-3): Kinetics and Mechanism of Oxidation Initiated by Cl Atoms and OH Radicals, IR Spectra, and Global Warming Potentials , 2004 .

[141]  V. Nemtchinov,et al.  Absorption cross-sections of HFC-134a in the spectral region between 7 and 12 μm , 2004 .

[142]  Jonathan M. Gregory,et al.  A new method for diagnosing radiative forcing and climate sensitivity , 2004 .

[143]  L. K. Gohar,et al.  Updated radiative forcing estimates of four halocarbons , 2004 .

[144]  Prasad Varanasi,et al.  Thermal infrared cross-sections of C2F6 at atmospheric temperatures , 2004 .

[145]  Grant W. Petty,et al.  A First Course in Atmospheric Radiation , 2004 .

[146]  Prasad Varanasi,et al.  Thermal infrared absorption cross-sections of CCl4 needed for atmospheric remote sensing , 2003 .

[147]  Steven W. Sharpe,et al.  Temperature-dependent absorption cross-sections in the thermal infrared bands of SF5CF3 , 2003 .

[148]  T. Wallington,et al.  Atmospheric lifetime of fluorotelomer alcohols. , 2003, Environmental science & technology.

[149]  Robert Sausen,et al.  Metrics of Climate Change: Assessing Radiative Forcing and Emission Indices , 2003 .

[150]  V. L. Orkin,et al.  Measurements of the infrared absorption cross-sections of haloalkanes and their use in a simplified calculational approach for estimating direct global warming potentials , 2003 .

[151]  M. Schultz,et al.  REanalysis of the TROpospheric chemical composition over the past 40 years (RETRO) , 2003 .

[152]  Jonathan P. Taylor,et al.  The ISSWG line-by-line inter-comparison experiment , 2003 .

[153]  R. Sausen,et al.  A comparison of climate response to different radiative forcings in three general circulation models: towards an improved metric of climate change , 2003 .

[154]  Akira Takada,et al.  Rate constants estimation for the reaction of hydrofluorocarbons and hydrofluoroethers with OH radicals , 2003 .

[155]  V. L. Orkin,et al.  Scientific Assessment of Ozone Depletion: 2010 , 2003 .

[156]  T. Wallington,et al.  Atmospheric chemistry of CF3CFHOCF3: Reaction with OH radicals, atmospheric lifetime, and global warming potential , 2002 .

[157]  G. Myhre,et al.  Role of spatial and temporal variations in the computation of radiative forcing due to sulphate aerosols: A regional study , 2002 .

[158]  Ole John Nielsen,et al.  Infrared spectrum and global warming potential of SF5CF3 , 2002 .

[159]  T. Wallington,et al.  Updated radiative forcing estimates of 65 halocarbons and nonmethane hydrocarbons , 2001 .

[160]  J. A. Beukes,et al.  Atmospheric degradation and global warming potentials of three perfluoroalkenes , 2001 .

[161]  Evaluation of the atmospheric lifetime and radiative forcing , 2001 .

[162]  Alan S. Manne,et al.  An alternative approach to establishing trade-offs among greenhouse gases , 2001, Nature.

[163]  G. Acerbonia,et al.  Atmospheric degradation and global warming potentials of three perfluoroalkenes , 2001 .

[164]  Atul K. Jain,et al.  Radiative forcings and global warming potentials of 39 greenhouse gases , 2000 .

[165]  Hurley,et al.  A potent greenhouse gas identified in the atmosphere: SF(5)CF(3) , 2000, Science.

[166]  G. Duxbury,et al.  Infrared absorption cross-sections and integrated absorption intensities of chloroform and fluoroform vapour , 2000 .

[167]  J. V. Auwera Infrared absorption cross-sections for two substituted ethanes: 1,1-difluoroethane (HFC-152a) and 1,2-dichloroethane , 2000 .

[168]  R. J. Knight,et al.  Infrared absorption cross-sections and integrated absorption intensities of perfluoroethane and cis-perfluorocyclobutane , 2000 .

[169]  G. Di Lonardo,et al.  Infrared absorption cross-sections and integrated absorption intensities of HFC-125 and HFC-143a , 2000 .

[170]  K. Shine,et al.  Radiative forcing and global warming potentials of 11 halogenated compounds , 2000 .

[171]  J. A. Beukes,et al.  An intercomparison of laboratory measurements of absorption cross sections and integrated absorption intensities for HCFC-22 , 2000 .

[172]  Timothy J. Wallington,et al.  Atmospheric chemistry of n-C3F7OCH3: Reaction with OH radicals and Cl atoms and atmospheric fate of n-C3F7OCH2O((center dot)) radicals , 2000 .

[173]  William F. Schneider,et al.  Stability and infrared spectra of mono-, di-, and trichloromethanol , 2000 .

[174]  Michael B. McElroy,et al.  Three-dimensional climatological distribution of tropospheric OH: Update and evaluation , 2000 .

[175]  Atul K. Jain,et al.  Consistent sets of atmospheric lifetimes and radiative forcings on climate for CFC replacements: HCFCs and HFCs , 2000 .

[176]  M. Kawasaki,et al.  Atmospheric Degradation of CF3OCFCF2: Kinetics and Mechanism of Its Reaction with OH Radicals and Cl Atoms , 2000 .

[177]  Brian C. O'Neill,et al.  The Jury is Still Out on Global Warming Potentials , 2000 .

[178]  J. HurleyT.,et al.  A POTENT GREENHOUSE GAS IDENTIFIED IN THE ATMOSPHERE , 2000 .

[179]  V. L. Orkin,et al.  Atmospheric lifetimes and global warming potentials of hydrofluoroethers: Reactivity toward OH, UV spectra, and IR absorption cross sections , 1999 .

[180]  Claus J. Nielsen,et al.  Infrared absorption cross section, radiative forcing, and GWP of four hydrofluoro(poly)ethers , 1999 .

[181]  Benjamin Kirtman,et al.  Tropospheric Water Vapor and Climate Sensitivity , 1999 .

[182]  L. K. Christensen,et al.  ATMOSPHERIC DEGRADATION MECHANISM OF CF3OCH3 , 1999 .

[183]  Piers M. Forster,et al.  The effect of human activity on radiative forcing of climate change: a review of recent developments , 1999 .

[184]  Run-Lie Shia,et al.  Atmospheric lifetime and global warming potential of HFC‐245fa , 1999 .

[185]  Timothy J. Wallington,et al.  Estimation of direct radiative forcing due to non-methane hydrocarbons , 1999 .

[186]  Atul K. Jain,et al.  Lifetimes and global warming potentials for dimethyl ether and for fluorinated ethers: CH3OCF3 (E143a), CHF2OCHF2 (E134), CHF2OCF3 (E125) , 1998 .

[187]  M. Glasius,et al.  Atmospheric lifetimes, infrared spectra and degradation products of a series of hydrofluoroethers , 1998 .

[188]  B. Briegleb,et al.  Infrared radiative forcing and atmospheric lifetimes of trace species based on observations from UARS , 1998 .

[189]  A. Mcculloch,et al.  Integrated infrared absorption coefficients of several partially fluorinated ether compounds: CF3OCF2H, CF2HOCF2H, CH3OCF2CF2H, CH3OCF2CFClH, CH3CH2OCF2CF2H, CF3CH2OCF2CF2H and CH2CHCH2OCF2CF2H , 1998 .

[190]  G. Myhre,et al.  New estimates of radiative forcing due to well mixed greenhouse gases , 1998 .

[191]  O. Wild,et al.  Greenhouse gas radiative forcing: Effects of averaging and inhomogeneities in trace gas distribution , 1998 .

[192]  K. Shine,et al.  The Effects of Changes in HITRAN and Uncertainties in the Spectroscopy on Infrared Irradiance Calculations , 1998 .

[193]  L. K. Christensen,et al.  Atmospheric Chemistry of HFE-7200 (C4F9OC2H5): Reaction with OH Radicals and Fate of C4F9OCH2CH2O(•) and C4F9OCHO(•)CH3 Radicals , 1998 .

[194]  David A. Newnham,et al.  Infrared absorption cross-sections and integrated absorption intensities of HFC-134 and HFC-143a vapour , 1998 .

[195]  Michael R. Gunson,et al.  Evaluation of source gas lifetimes from stratospheric observations , 1997 .

[196]  William F. Schneider,et al.  Atmospheric Chemistry of HFE-7100 (C4F9OCH3): Reaction with OH Radicals, UV Spectra and Kinetic Data for C4F9OCH2· and C4F9OCH2O2· Radicals, and the Atmospheric Fate of C4F9OCH2O· Radicals , 1997 .

[197]  Simon Pinnock,et al.  Radiative forcing of climate change by CFC‐11 and possible CFC replacements , 1997 .

[198]  P. Forster,et al.  On aspects of the concept of radiative forcing , 1997 .

[199]  K. H. Illinger,et al.  Infrared radiative forcing of CFC substitutes and their atmospheric reaction products , 1997 .

[200]  D. Wuebbles,et al.  Radiative forcing calculations for CH3Cl and CH3Br , 1997 .

[201]  G. Myhre,et al.  Role of spatial and temporal variations in the computation of radiative forcing and GWP , 1997 .

[202]  J. Hansen,et al.  Radiative forcing and climate response , 1997 .

[203]  K. Trenberth,et al.  Earth's annual global mean energy budget , 1997 .

[204]  R. Weiss,et al.  GAGE/AGAGE measurements indicating reductions in global emissions of CCl3F and CCl2F2 in 1992–1994 , 1997 .

[205]  C. Clerbaux,et al.  1,1,1,3,3,‐pentafluorobutane (HFC‐365mfc): atmospheric degradation and contribution to radiative forcing , 1997 .

[206]  L. K. Christensen,et al.  Atmospheric chemistry of HFE-7100 , 1997 .

[207]  Leo Radom,et al.  Harmonic Vibrational Frequencies: An Evaluation of Hartree−Fock, Møller−Plesset, Quadratic Configuration Interaction, Density Functional Theory, and Semiempirical Scale Factors , 1996 .

[208]  Michael J. Prather,et al.  Time scales in atmospheric chemistry: Theory, GWPs for CH4 and CO, and runaway growth , 1996 .

[209]  David A. Newnham,et al.  INFRARED BAND STRENGTHS AND ABSORPTION CROSS-SECTIONS OF HFC-32 VAPOUR , 1996 .

[210]  A. Ravishankara,et al.  Atmospheric fate and greenhouse warming potentials of HFC 236fa and HFC 236ea , 1996 .

[211]  D. Newnham,et al.  Infrared band strengths of HFC-134a vapour , 1996 .

[212]  J. Houghton,et al.  Climate change 1995: the science of climate change. , 1996 .

[213]  T. Matsuno,et al.  Radiative Effects and Halocarbon Global Warming Potentials of Replacement Compounds for Chlorofluorocarbons , 1995 .

[214]  T. Wallington,et al.  Radiative forcing of climate by hydrochlorofluorocarbons and hydrofluorocarbons , 1995 .

[215]  C. Brühl,et al.  Infrared band intensities and global warming potentials of CF4, C2F6, C3F8, C4F10, C5F12, and C6F14 , 1995 .

[216]  Sensitivity of direct global warming potentials to key uncertainties , 1995 .

[217]  J. Daniel,et al.  On the evaluation of halocarbon radiative forcing and global warming potentials , 1995 .

[218]  J. Houghton Climate change 1994 : radiative forcing of climate change and an evaluation of the IPCC IS92 emission scenarios , 1995 .

[219]  O. Nielsen,et al.  Hydrofluorocarbons and stratospheric ozone , 1995 .

[220]  S. Kondo,et al.  Estimation of Total Infrared Intensities of Fluorinated Ethyl Methyl Ethers. , 1994 .

[221]  G. Fischer,et al.  INTEGRATED ABSORPTION INTENSITIES OF HALOETHANES AND HALOPROPANES , 1994 .

[222]  C. Clerbaux,et al.  Determination of the infrared cross sections and global warming potentials of 1,1,2-trifluoroethane (HFC-143) , 1994 .

[223]  R. Garcia,et al.  Ozone depletion and global warming potentials of CF3I , 1994 .

[224]  V. Nemtchinov,et al.  Spectral absorption-coefficient data on HCFC-22 and SF6 for remote-sensing applications , 1994 .

[225]  F. Nicolaisen,et al.  Integrated absorption coefficients of CHClF2 (HCFC-22) and CH3Br in the atmospheric infrared window region , 1994 .

[226]  P. Midgley,et al.  Distribution of emissions of chlorofluorocarbons (CFCs) 11, 12, 113, 114 and 115 among reporting and non-reporting countries in 1986 , 1994 .

[227]  Prasad Varanasi,et al.  Measurement of the absorption cross-sections of CFC-11 at conditions representing various model atmospheres , 1994 .

[228]  T J Wallington,et al.  The Environmental Impact of CFC Replacements HFCs and HCFCs. , 1994, Environmental science & technology.

[229]  Prasad Varanasi,et al.  Thermal infrared absorption coefficients of CFC-12 at atmospheric conditions , 1994 .

[230]  Ole John Nielsen,et al.  Atmospheric Chemistry of HFC-152: UV Absorption Spectrum of CH2FCFHO2 Radicals, Kinetics of the Reaction CH2FCFHO2 + NO .fwdarw. CH2FCHFO + NO2, and Fate of the Alkoxy Radical CH2FCFHO , 1994 .

[231]  M. Mills,et al.  Do Hydrofluorocarbons Destroy Stratospheric Ozone? , 1994, Science.

[232]  H. Nelson,et al.  Potential chlorofluorocarbon replacements: OH reaction rate constants between 250 and 315 K and infrared absorption spectra , 1993 .

[233]  C. Clerbaux,et al.  Infrared cross sections and global warming potentials of 10 alternative hydrohalocarbons , 1993 .

[234]  C. Rinsland,et al.  Atmospheric sulfur hexafluoride: Sources, sinks and greenhouse warming , 1993 .

[235]  A. Ravishankara,et al.  Atmospheric Lifetimes of Long-Lived Halogenated Species , 1993, Science.

[236]  F. Cappellani,et al.  Infrared band strengths and their temperature dependence of the hydrohalocarbons HFC-134a, HFC-152a, HCFC-22, HCFC-123 and HCFC-142b , 1992 .

[237]  John J. Orlando,et al.  Temperature dependence of the infrared absorption cross sections of carbon tetrachloride , 1992 .

[238]  R. Stolarski,et al.  Measured Trends in Stratospheric Ozone , 1992, Science.

[239]  A. McDaniel,et al.  The temperature dependent, infrared absorption cross-sections for the chlorofluorocarbons: CFC-11, CFC-12, CFC-13, CFC-14, CFC-22, CFC-113, CFC-114, and CFC-115 , 1991 .

[240]  Donald J. Wuebbles,et al.  Radiative forcing of climate , 1991 .

[241]  Robert G. Ellingson,et al.  The Intercomparison of Radiation Codes in Climate Models , 1991 .

[242]  Michael J. Prather,et al.  Tropospheric OH and the lifetimes of hydrochlorofluorocarbons , 1990 .

[243]  Wei‐Chyung Wang,et al.  Model calculations of the relative effects of CFCs and their replacements on global warming , 1990, Nature.

[244]  D. Lashof,et al.  Relative contributions of greenhouse gas emissions to global warming , 1990, Nature.

[245]  J. Houghton,et al.  Climate change : the IPCC scientific assessment , 1990 .

[246]  J. Hansen,et al.  Greenhouse effect of chlorofluorocarbons and other trace gases , 1989 .

[247]  D. Wuebbles Beyond CO2 : the other greenhouse gases , 1989 .

[248]  C. Chapados,et al.  Infrared absorption of SF6 from 32 to 3000 cm−1 in the gaseous and liquid states , 1988 .

[249]  J. D. Rogers,et al.  Absolute infrared intensities for F‐113 and F‐114 and an assessment of their greenhouse warming potential relative to other chlorofluorocarbons , 1988 .

[250]  P. Varanasi,et al.  Infrared intensities of some chlorofluorocarbons capable of perturbing the global climate , 1988 .

[251]  M. Kurylo,et al.  The gas phase reactions of hydroxyl radicals with a series of esters over the temperature range 240–440 K , 1988 .

[252]  P. Varanasi,et al.  Remeasurement of the absolute intensities of CFC11 (CFCl3) and CFC12 (CF2Cl2) , 1988 .

[253]  Robert A. Toth,et al.  Molecular line parameters for the atmospheric trace molecule spectroscopy experiment. , 1987, Applied optics.

[254]  J. Hansen,et al.  Climate-chemical interactions and effects of changing atmospheric trace gases , 1987 .

[255]  Nguyen-van-Thanh,et al.  Infrared band shapes and band strengths of CF2Cl2 from 800 to 1200 cm−1 at 296 and 200 K , 1986 .

[256]  R. McDowell,et al.  Vibrational levels and anharmonicity in SF6—I. Vibrational band analysis , 1986 .

[257]  J. Jeffries,et al.  Kinetics of the reaction hydroxyl + ammonia , 1986 .

[258]  A Goldman,et al.  Approximate absorption cross sections of F12, F11, C1ONO(2), N(2)O(5), HNO(3), CC(4), CF(4), F21, F113, F114, and HNO(4). , 1985, Applied optics.

[259]  Veerabhadran Ramanathan,et al.  Trace gas trends and their potential role in climate change , 1985 .

[260]  I. Isaksen,et al.  A diabatic circulation two-dimensional model with photochemistry: Simulations of ozone and long-lived tracers with surface sources , 1985 .

[261]  J. Farman,et al.  Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction , 1985, Nature.

[262]  N. Scott,et al.  Intercomparison of Radiation Codes in Climate Models (ICRCCM): Longwave Clear-Sky Results—A Workshop Summary , 1985 .

[263]  J. Dupré,et al.  The infrared bands ν2 and ν5 of CH3Br with Coriolis interaction , 1983 .

[264]  Robert L. Sams,et al.  Absolute band strengths of halocarbons F‐11 and F‐12 in the 8‐ to 16‐μm region , 1983 .

[265]  D. S. Dunn,et al.  The absolute intensities of the binary combination bands in the infrared spectrum of SF6 , 1982 .

[266]  P. Sestini,et al.  Kinetics and mechanisms. , 1982 .

[267]  G. Graner The methyl bromide molecule: A critical consideration of perturbations in spectra , 1981 .

[268]  J. Bouanich,et al.  Infrared spectral absorption intensities in the ν3 and ν4 regions of SF6 , 1980 .

[269]  W. T. King,et al.  Integrated infrared intensities and transition moments in SF6 , 1980 .

[270]  R. Boese,et al.  Temperature dependence of intensities of the 8-12 micron bands of CFCl3 , 1980 .

[271]  Petr Čársky,et al.  Ab Initio Calculations , 1980 .

[272]  D. A. Horner,et al.  Intensities of binary overtone and combination bands in the ir spectrum of CClF3 , 1978 .

[273]  P. Varanasi,et al.  Intensity measurements in freon bands of atmospheric interest , 1977 .

[274]  J. Hansen,et al.  Greenhouse Effects due to Man-Made Perturbations of Trace Gases , 1976, Science.

[275]  Veerabhadran Ramanathan,et al.  Greenhouse Effect Due to Chlorofluorocarbons: Climatic Implications , 1975, Science.

[276]  G. Graner,et al.  The vibration-rotation bands v2 and v5 of methyl bromide , 1975 .

[277]  M. Molina,et al.  Stratospheric sink for chlorofluoromethanes: chlorine atomc-atalysed destruction of ozone , 1974, Nature.

[278]  C. Prabhakara,et al.  The Nimbus 4 infrared spectroscopy experiment: 2. Comparison of observed and theoretical radiances from 425–1450 cm−1 , 1974 .

[279]  P. Goldsmith Atmospheric chemistry , 1974, Nature.

[280]  Bert Bolin,et al.  A note on the concepts of age distribution and transit time in natural reservoirs , 1973 .

[281]  J. Lovelock,et al.  Halogenated Hydrocarbons in and over the Atlantic , 1973, Nature.

[282]  J. D. Fast,et al.  Kinetics and mechanisms , 1971 .

[283]  P. Atkins,et al.  Molecular Quantum Mechanics , 1970 .

[284]  Alkali Halide Crystals,et al.  Infrared Absorption in , 1967 .

[285]  J. Morcillo,et al.  Infra-red intensities in CH2F2, CH2Cl2 and CF2Cl2☆ , 1966 .

[286]  W. Person,et al.  Infrared intensities of the fundamental frequencies of CF3Br , 1961 .

[287]  L. Wallace VIBRATION-ROTATION BANDS , 1961 .

[288]  Ralph G. Pearson,et al.  Kinetics and mechanism , 1961 .

[289]  W. T. King,et al.  INFRARED INTENSITIES OF THE FUNDAMENTAL FREQUENCIES OF SILANE , 1960 .

[290]  J. Scherer,et al.  Vibrational Intensities. IX. C2F6: Extension and Revision , 1958 .

[291]  D. Hornig,et al.  Bond Moments and Derivatives in CF4, SiF4, and SF6 from Infrared Intensities , 1953 .