Developments in semiconductor thermoelectric materials

A surge in interest in developing alternative renewable energy technologies has been observed in recent years. In particular, thermoelectrics has drawn attention because thermoelectric effects enable direct conversion between thermal and electrical energy, and provide power generation and refrigeration alternatives. During the past decade, the performance of thermoelectric materials has been considerably improved; however, many challenges continue to exist. Developing thermoelectric materials with superior performance means tailoring interconnected thermoelectric physical parameters-electrical conductivities, Seebeck coefficients, and thermal conductivities for a crystalline system. The objectives of this paper are to introduce the recent developments in semiconductor thermoelectric materials, and briefly summarize the applications of such materials.

[1]  D. Rowe CRC Handbook of Thermoelectrics , 1995 .

[2]  Tiejun Zhu,et al.  Syntheses and thermoelectric properties of Bi2Te3/Sb2Te3 bulk nanocomposites with laminated nanostructure , 2008 .

[3]  A. G. Kunjomana,et al.  Dislocation and microindentation analysis of vapour grown Bi2Te3‐xSex whiskers , 2008 .

[4]  Chude Feng,et al.  Moderate-temperature thermoelectric properties of TiCoSb-based half-Heusler compounds Ti1−xTaxCoSb , 2007 .

[5]  Donald T. Morelli,et al.  Transport properties of pure and doped M NiSn ( M =Zr, Hf) , 1999 .

[6]  Ichiro Terasaki,et al.  Large thermoelectric power in NaCo 2 O 4 single crystals , 1997 .

[7]  Hohyun Lee,et al.  Enhanced thermoelectric figure of merit in nanostructured n-type silicon germanium bulk alloy , 2008 .

[8]  George S. Nolas,et al.  Semiconducting Ge clathrates: Promising candidates for thermoelectric applications , 1998 .

[9]  Rajeev J. Ram,et al.  Solar Thermoelectric Generator for Micropower Applications , 2009, Journal of Electronic Materials.

[10]  M. Shikano,et al.  Electrical and thermal properties of single-crystalline (Ca2CoO3)0.7CoO2 with a Ca3Co4O9 structure , 2003 .

[11]  William A. Goddard,et al.  Silicon nanowires as efficient thermoelectric materials , 2008, Nature.

[12]  S. Katsuyama,et al.  Thermoelectric properties of (Na1−yMy)xCo2O4 (M=K, Sr, Y, Nd, Sm and Yb; y=0.01∼0.35) , 2003 .

[13]  M. P. Walsh,et al.  Nanostructured thermoelectric materials , 2005 .

[14]  K. Cai,et al.  The influence of co-doping Ag and Sb on microstructure and thermoelectric properties of PbTe prepared by combining hydrothermal synthesis and melting , 2009 .

[15]  K. Matsubara,et al.  Development of a high efficient thermoelectric stack for a waste exhaust heat recovery of vehicles , 2002, Twenty-First International Conference on Thermoelectrics, 2002. Proceedings ICT '02..

[16]  Kazunori Takada,et al.  Superconductivity in two-dimensional CoO2 layers , 2003, Nature.

[17]  Terry M. Tritt,et al.  Effect of substitutions on the thermoelectric figure of merit of half-Heusler phases at 800 °C , 2006 .

[18]  W. M. Yim,et al.  The Effects of Growth Rate on the Thermoelectric Properties of Bi2Te3 ‐ Sb2Te3 ‐ Sb2Se3 Pseudoternary Alloys , 1968 .

[19]  D. Gruen,et al.  Potential impact of ZT = 4 thermoelectric materials on solar thermal energy conversion technologies. , 2010, The journal of physical chemistry. B.

[20]  J. Heremans,et al.  Low temperature thermal, thermoelectric, and thermomagnetic transport in indium rich Pb1−xSnxTe alloys , 2008 .

[21]  N. Ravishankar,et al.  Microsphere Bouquets of Bismuth Telluride Nanoplates: Room-Temperature Synthesis and Thermoelectric Properties , 2010 .

[22]  Saffa Riffat,et al.  Thermoelectrics: a review of present and potential applications , 2003 .

[23]  J. Fleurial,et al.  Skutterudites: an update , 1997, XVI ICT '97. Proceedings ICT'97. 16th International Conference on Thermoelectrics (Cat. No.97TH8291).

[24]  G. Stucky,et al.  Large thermoelectric figure of merit at high temperature in Czochralski-grown clathrate Ba8Ga16Ge30 , 2006 .

[25]  Junyou Yang,et al.  Microstructure control and thermoelectric properties improvement to n-type bismuth telluride based materials by hot extrusion , 2007 .

[26]  G. J. Snyder,et al.  Complex thermoelectric materials. , 2008, Nature materials.

[27]  M. P. Walsh,et al.  Quantum Dot Superlattice Thermoelectric Materials and Devices , 2002, Science.

[28]  L. Koudelka,et al.  Energy formation of antisite defects in doped Sb2Te3 and Bi2Te3 crystals , 1986 .

[29]  Zinovy Dashevsky,et al.  Powder metallurgical processing of functionally graded p-Pb1−xSnxTe materials for thermoelectric applications , 2007 .

[30]  T. Hirai,et al.  Effect of tin content on thermoelectric properties of p-type lead tin telluride , 2000 .

[31]  A. Gloskovskii,et al.  Investigation of the Thermoelectric Properties of the Series TiCo1-xNixSnxSb1-x , 2010 .

[32]  Min Zhou,et al.  Nanostructured AgPb(m)SbTe(m+2) system bulk materials with enhanced thermoelectric performance. , 2008, Journal of the American Chemical Society.

[33]  R. K. Williams,et al.  Filled Skutterudite Antimonides: A New Class of Thermoelectric Materials , 1996, Science.

[34]  Ctirad Uher,et al.  A new thermoelectric material: CsBi4Te6. , 2004, Journal of the American Chemical Society.

[35]  X. Zhao,et al.  Synthesis and properties of rare earth containing Bi2Te3 based thermoelectric alloys , 2005 .

[36]  M. Shikano,et al.  Contribution of electronic structure to the large thermoelectric power in layered cobalt oxides , 2004 .

[37]  Lin Guo,et al.  Fabrication of bismuth telluride nanotubes via a simple solvothermal process , 2006 .

[38]  M. Barsoum,et al.  Effect of rotary-die equal channel angular pressing on the thermoelectric properties of a (Bi,Sb)_2Te_3 alloy , 2005 .

[39]  Pierre F. P. Poudeu,et al.  High figure of merit in nanostructured n-type KPbmSbTe m+2 thermoelectric materials , 2010 .

[40]  Kuei-Fang Hsu,et al.  Nanostructuring, compositional fluctuations, and atomic ordering in the thermoelectric materials AgPb(m)SbTe(2+m). The myth of solid solutions. , 2005, Journal of the American Chemical Society.

[41]  T. Goto,et al.  Thermal and electrical properties of Czochralski grown GeSi single crystals , 2001 .

[42]  A. Majumdar,et al.  Enhanced thermoelectric performance of rough silicon nanowires , 2008, Nature.

[43]  Rama Venkatasubramanian,et al.  Enhanced thermoelectric performance in PbTe-based superlattice structures from reduction of lattice thermal conductivity , 2005 .

[44]  Kyeongsoon Park,et al.  Improvement in high-temperature thermoelectric properties of NaCo2O4 through partial substitution of Ni for Co , 2006 .

[45]  E. F. Steigmeier,et al.  Thermal and Electrical Properties of Heavily Doped Ge‐Si Alloys up to 1300°K , 1964 .

[46]  Guiying Xu,et al.  Improvement in thermoelectric properties of n-type Si95Ge5 alloys by heavy multi-dopants , 2008 .

[47]  M. Dresselhaus,et al.  Structure study of bulk nanograined thermoelectric bismuth antimony telluride. , 2009, Nano letters.

[48]  Weishu Liu,et al.  Improvement of Thermoelectric Performance of CoSb3-xTex Skutterudite Compounds by Additional Substitution of IVB-Group Elements for Sb , 2008 .

[49]  B. Chun,et al.  Optimum dopant content of n-type 95% Bi2Te3 + 5% Bi2Se3 compounds fabricated by gas atomization and extrusion process , 2006 .

[50]  F. D. Rosi,et al.  Thermoelectric properties of Bi2Te3-Sb2Te3-Sb2Se3 pseudo-ternary alloys in the temperature range 77 to 300° K , 1966 .

[51]  Jingfeng Li,et al.  Fabrication and thermoelectric properties of fine-grained TiNiSn compounds , 2009 .

[52]  Jonathan D'Angelo,et al.  Nanostructuring and High Thermoelectric Efficiency in p‐Type Ag(Pb1 – ySny)mSbTe2 + m , 2006 .

[53]  A. Huber,et al.  Improved thermoelectrically cooled X/γ-ray detectors and electronics , 2001 .

[54]  M. Shikano,et al.  Electronic structure and large thermoelectric power in Ca3Co4O9 , 2004 .

[55]  Moayyed A. Hussain,et al.  The maximum possible conversion efficiency of silicon‐germanium thermoelectric generators , 1991 .

[56]  Holger Kleinke,et al.  New bulk Materials for Thermoelectric Power Generation: Clathrates and Complex Antimonides† , 2010 .

[57]  I. Terasaki,et al.  Na-site substitution effects on the thermoelectric properties of NaCo 2 O 4 , 1999 .

[58]  J. Akimoto,et al.  Single-crystal growth, crystal and electronic structure of NaCoO2 , 2003 .

[59]  Gang Zhang,et al.  Large thermoelectric figure of merit in Si1−xGex nanowires , 2010 .

[60]  Yongdeuk Jung,et al.  MOCVD of Bi2Te3 and Sb2Te3 on GaAs substrates for thin-film thermoelectric applications. , 2006, Journal of nanoscience and nanotechnology.

[61]  M. Dresselhaus,et al.  High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys , 2008, Science.

[62]  W. P. Carroll,et al.  Review of recent advances of radioisotope power systems , 2008 .

[63]  R.J. Ram,et al.  Thin-film thermoelectric generator element characterization , 2005, ICT 2005. 24th International Conference on Thermoelectrics, 2005..

[64]  Genqiang Zhang,et al.  Wet chemical synthesis and thermoelectric properties of V-VI one- and two-dimensional nanostructures. , 2010, Dalton transactions.

[65]  Jean-Pierre Fleurial,et al.  Nanostructured materials for thermoelectric applications. , 2010, Chemical communications.

[66]  Jingfeng Li,et al.  Enhanced thermoelectric properties in CoSb3-xTex alloys prepared by mechanical alloying and spark plasma sintering , 2007 .

[67]  George S. Nolas,et al.  SKUTTERUDITES : A phonon-glass-electron crystal approach to advanced thermoelectric energy conversion applications , 1999 .

[68]  Hohyun Lee,et al.  Enhanced thermoelectric figure-of-merit in nanostructured p-type silicon germanium bulk alloys. , 2008, Nano letters.

[69]  O. S. Babalola,et al.  Uniform Cr2+ doping of physical vapor transport grown CdSxSe1−x crystals , 2005 .

[70]  R C Morrow,et al.  Biomass Production System (BPS) plant growth unit. , 2000, Advances in space research : the official journal of the Committee on Space Research.

[71]  G. J. Snyder,et al.  Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States , 2008, Science.

[72]  Rudolf P. Huebener,et al.  Prospects for Peltier cooling of superconducting electronics , 1998 .

[73]  M. Yildiz,et al.  A continuum model for the Liquid Phase Diffusion growth of bulk SiGe single crystals , 2005 .

[74]  L. Bell Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems , 2008, Science.

[75]  Gang Chen,et al.  Bulk nanostructured thermoelectric materials: current research and future prospects , 2009 .

[76]  Weishu Liu,et al.  High-performance nanostructured thermoelectric materials , 2010 .

[77]  Jonathan D'Angelo,et al.  High thermoelectric figure of merit and nanostructuring in bulk p-type Na1-xPbmSbyTem+2. , 2006, Angewandte Chemie.

[78]  D. M. Rowe,et al.  Phonon scattering at grain boundaries in heavily doped fine-grained silicon–germanium alloys , 1981, Nature.

[79]  Shi Xue Dou,et al.  Phase formation and magnetotransport of alkali metal doped Na0.75CoO2 thermoelectric oxide , 2010 .

[80]  J. Przyłuski,et al.  Investigation of vacuum deposition of Bi2Te3 - based thermoelectric materials , 1987 .

[81]  F. Yin,et al.  Thermoelectricity for crystallographic anisotropy controlled Bi-Te based alloys and p-n modules , 2006 .

[82]  Weishu Liu,et al.  Enhanced thermoelectric and mechanical properties in textured n-type Bi2Te3 prepared by spark plasma sintering , 2008 .

[83]  J. Schilz,et al.  Bulk growth of silicon-germanium solid solutions , 1995 .

[84]  Hideo Hosono,et al.  Giant thermoelectric Seebeck coefficient of a two-dimensional electron gas in SrTiO3. , 2007, Nature materials.

[85]  Miroslav Bojic Thermoelectric cooling of a train carriage by using a coldness-recovery device , 1997 .

[86]  Jiong Yang,et al.  Enhanced thermoelectric performance of dual-element-filled skutterudites BaxCeyCo4Sb12 , 2009 .

[87]  Mildred S. Dresselhaus,et al.  Effect of quantum-well structures on the thermoelectric figure of merit. , 1993, Physical Review B (Condensed Matter).

[88]  L. E. Shelimova,et al.  Electroactive and electroinactive dopants in Bi2Te3 and their interaction with antisite defects , 1995 .

[89]  Andrew D. Holland,et al.  Cooled CdZnTe detectors for X-ray astronomy , 1999 .

[90]  M. Kanatzidis,et al.  Cubic AgPbmSbTe2+m: Bulk Thermoelectric Materials with High Figure of Merit , 2004, Science.

[91]  Il-Ho Kim,et al.  (Bi,Sb)2(Te,Se)3-based thin film thermoelectric generators , 2000 .

[92]  B. Sales,et al.  FILLED SKUTTERUDITE ANTIMONIDES : ELECTRON CRYSTALS AND PHONON GLASSES , 1997 .

[93]  Qingjie Zhang,et al.  Unique nanostructures and enhanced thermoelectric performance of melt-spun BiSbTe alloys , 2009 .

[94]  Mildred S. Dresselhaus,et al.  Effect of quantum-well structures on the thermoelectric figure of merit. , 1993, Physical review. B, Condensed matter.

[95]  R. Venkatasubramanian,et al.  Thin-film thermoelectric devices with high room-temperature figures of merit , 2001, Nature.

[96]  Y. Morii,et al.  Modulated Structure of the Thermoelectric Compound [Ca2CoO3]0.62CoO2 , 2002 .

[97]  D. Chateigner,et al.  Textured Ca3Co4O9 thermoelectric oxides by thermoforging process , 2005 .

[98]  M. Dresselhaus,et al.  Effects of nanoscale porosity on thermoelectric properties of SiGe , 2010 .

[99]  M. Kanatzidis Nanostructured Thermoelectrics: The New Paradigm?† , 2010 .

[100]  Qiang Shen,et al.  Effects of partial substitution of Ni by Pd on the thermoelectric properties of ZrNiSn-based half-Heusler compounds , 2001 .

[101]  Mohamed S. El-Genk,et al.  Efficient segmented thermoelectric unicouples for space power applications , 2003 .