An epigenetic switch governing daughter cell separation in Bacillus subtilis.

Growing cells of Bacillus subtilis are a bistable mixture of individual motile cells in which genes for daughter cell separation and motility are ON, and chains of sessile cells in which these genes are OFF. How this ON/OFF switch is controlled has been mysterious. Here we report that a complex of the SinR and SlrR proteins binds to and represses genes involved in cell separation and motility. We also report that SinR and SlrR constitute a double-negative feedback loop in which SinR represses the gene for SlrR (slrR), and, by binding to (titrating) SinR, SlrR prevents SinR from repressing slrR. Thus, SlrR indirectly derepresses its own gene, creating a self-reinforcing loop. Finally, we show that, once activated, the loop remains locked in a high SlrR state in which cell separation and motility genes are OFF for extended periods of time. SinR and SlrR constitute an epigenetic switch for controlling genes involved in cell separation and motility.

[1]  Loralyn M. Cozy,et al.  Gene position in a long operon governs motility development in Bacillus subtilis , 2010, Molecular microbiology.

[2]  R. Losick,et al.  Paralogous antirepressors acting on the master regulator for biofilm formation in Bacillus subtilis , 2009, Molecular microbiology.

[3]  Nicola R. Stanley-Wall,et al.  σX Is Involved in Controlling Bacillus subtilis Biofilm Architecture through the AbrB Homologue Abh , 2009, Journal of bacteriology.

[4]  O. Kuipers,et al.  Bistability, epigenetics, and bet-hedging in bacteria. , 2008, Annual review of microbiology.

[5]  Kazuo Kobayashi SlrR/SlrA controls the initiation of biofilm formation in Bacillus subtilis , 2008, Molecular microbiology.

[6]  R. Chen,et al.  Role of the σD-Dependent Autolysins in Bacillus subtilis Population Heterogeneity , 2008, Journal of bacteriology.

[7]  R. Losick,et al.  A novel regulatory protein governing biofilm formation in Bacillus subtilis , 2008, Molecular microbiology.

[8]  Roberto Kolter,et al.  Control of cell fate by the formation of an architecturally complex bacterial community. , 2008, Genes & development.

[9]  S. Foster,et al.  Bacterial peptidoglycan (murein) hydrolases. , 2008, FEMS microbiology reviews.

[10]  Roberto Kolter,et al.  Bistability and biofilm formation in Bacillus subtilis , 2007, Molecular microbiology.

[11]  D. Dubnau,et al.  Noise in Gene Expression Determines Cell Fate in Bacillus subtilis , 2007, Science.

[12]  Kazuo Kobayashi Bacillus subtilis Pellicle Formation Proceeds through Genetically Defined Morphological Changes , 2007, Journal of bacteriology.

[13]  R. Losick,et al.  A major protein component of the Bacillus subtilis biofilm matrix , 2006, Molecular microbiology.

[14]  R. Losick,et al.  Targets of the master regulator of biofilm formation in Bacillus subtilis , 2006, Molecular microbiology.

[15]  R. Losick,et al.  Cell population heterogeneity during growth of Bacillus subtilis. , 2005, Genes & development.

[16]  W. Margolin,et al.  FtsZ and the division of prokaryotic cells and organelles , 2005, Nature Reviews Molecular Cell Biology.

[17]  J. Beckwith,et al.  Diverse Paths to Midcell: Assembly of the Bacterial Cell Division Machinery , 2005, Current Biology.

[18]  D. Dubnau,et al.  Bistability in the Bacillus subtilis K‐state (competence) system requires a positive feedback loop , 2005, Molecular microbiology.

[19]  Masaya Fujita,et al.  High- and Low-Threshold Genes in the Spo0A Regulon of Bacillus subtilis , 2005, Journal of bacteriology.

[20]  R. Losick,et al.  A master regulator for biofilm formation by Bacillus subtilis , 2004, Molecular microbiology.

[21]  D. Hilbert,et al.  Sporulation of Bacillus subtilis. , 2004, Current opinion in microbiology.

[22]  S. Ehrlich,et al.  Genes Involved in Formation of Structured Multicellular Communities by Bacillus subtilis , 2004, Journal of bacteriology.

[23]  J. Errington,et al.  Cytokinesis in Bacteria , 2003, Microbiology and Molecular Biology Reviews.

[24]  R. Losick,et al.  Fruiting body formation by Bacillus subtilis , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[25]  A. Sonenshein,et al.  Control of sporulation initiation in Bacillus subtilis. , 2000, Current opinion in microbiology.

[26]  S. Foster,et al.  Autolysins of Bacillus subtilis: multiple enzymes with multiple functions. , 2000, Microbiology.

[27]  S. Ishikawa,et al.  Peptidoglycan Hydrolase LytF Plays a Role in Cell Separation with CwlF during Vegetative Growth of Bacillus subtilis , 1999, Journal of bacteriology.

[28]  I. Smith,et al.  An evolutionary link between sporulation and prophage induction in the structure of a repressor:anti-repressor complex. , 1998, Journal of molecular biology.

[29]  I. Smith,et al.  Crystallisation of the Bacillus subtilis sporulation inhibitor SinR, complexed with its antagonist, Sinl , 1996, FEBS letters.

[30]  M. Chamberlin,et al.  Identification of flagellar synthesis regulatory and structural genes in a sigma D-dependent operon of Bacillus subtilis , 1994, Journal of bacteriology.

[31]  J. Sekiguchi,et al.  High-level transcription of the major Bacillus subtilis autolysin operon depends on expression of the sigma D gene and is affected by a sin (flaD) mutation , 1993, Journal of bacteriology.

[32]  H. M. Parker,et al.  Studies of sigma D-dependent functions in Bacillus subtilis , 1990, Journal of bacteriology.

[33]  M. Stahl,et al.  Cloning of the flagellin gene from Bacillus subtilis and complementation studies of an in vitro-derived deletion mutation , 1989, Journal of bacteriology.

[34]  M. Chamberlin,et al.  The Bacillus subtilis flagellin gene (hag) is transcribed by the sigma 28 form of RNA polymerase , 1989, Journal of bacteriology.

[35]  M. Chamberlin,et al.  Cloning, sequencing, and disruption of the Bacillus subtilis sigma 28 gene , 1988, Journal of bacteriology.

[36]  I. Smith,et al.  Structure and expression of the Bacillus subtilis sin operon , 1988, Journal of bacteriology.

[37]  D. Karamata,et al.  Genetic analysis of autolysin-deficient and flagellaless mutants of Bacillus subtilis , 1984, Journal of bacteriology.

[38]  H. Vlamakis,et al.  Generation of multiple cell types in Bacillus subtilis. , 2009, FEMS microbiology reviews.

[39]  M. Pagni,et al.  Bacillus subtilis 168 gene lytF encodes a γ-D-glutamate-meso-diaminopimelate muropeptidase expressed by the alternative vegetative sigma factor, σD , 1999 .

[40]  D. Bramhill,et al.  Bacterial cell division. , 1997, Annual review of cell and developmental biology.

[41]  D. Karamata,et al.  Effect of the SinR protein on the expression of the Bacillus subtilis 168 lytABC operon. , 1996, Microbial drug resistance.

[42]  U. Bai,et al.  SinI modulates the activity of SinR, a developmental switch protein of Bacillus subtilis, by protein-protein interaction. , 1993, Genes & development.