Natural second-order observers for second-order distributed parameter systems

The aim of this manuscript is to present an alternative method for designing state observers for second-order distributed parameter systems without resorting to a first-order formulation. This method has the advantage of utilizing the algebraic structure that second-order systems enjoy with the obvious computational savings in observer gain calculations. The proposed scheme ensures that the derivative of the estimated position is indeed the estimate of the velocity component and to achieve such a result, a parameter-dependent Lyapunov function was utilized to ensure the asymptotic convergence of the state estimation error.

[1]  Wodek Gawronski,et al.  Dynamics and Control of Structures , 1998 .

[2]  B. Anderson,et al.  Optimal control: linear quadratic methods , 1990 .

[3]  Daniel J. Inman,et al.  OPTIMAL CONTROL FOR VIBRATING SYSTEMS , 1999 .

[4]  Daniel J. Inman,et al.  Vibration: With Control, Measurement, and Stability , 1989 .

[5]  P. Hughes,et al.  Controllability and Observability of Linear Matrix-Second-Order Systems , 1980 .

[6]  B.N. Datta,et al.  Multi-input partial eigenvalue assignment for the symmetric quadratic pencil , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[7]  B. Datta,et al.  Single-Input Partial Pole-Assignment in Gyroscopic Quadratic Matrix and Operator Pencils , 2000 .

[8]  Paolo L. Gatti,et al.  Introduction to Dynamics and Control of Flexible Structures , 1996 .

[9]  Michael A. Demetriou,et al.  Adaptive parameter estimation of hyperbolic distributed parameter systems : non-symmetric damping and slowly time varying systems , 1998 .

[10]  Marios M. Polycarpou,et al.  Fault Diagnosis of Output-Induced Actuator Failures for a Flexible Beam with Collocated Input and Output , 1997 .

[11]  Michael A. Demetriou,et al.  Adaptive identification of second-order distributed parameter systems , 1994 .

[12]  C. Canuto Spectral methods in fluid dynamics , 1991 .

[13]  D. Luenberger An introduction to observers , 1971 .

[14]  Alan J. Laub,et al.  Controllability and observability criteria for multivariable linear second-order models , 1984 .

[15]  Harvey Thomas Banks,et al.  Smart material structures: Modeling, estimation, and control , 1996 .

[16]  D. Kraft Nonlinear system analysis by direct collocation , 1987 .

[17]  Mark J. Balas OBSERVERS? HAVE CONVERGENT SECOND-ORDER , 1998 .

[18]  D. Inman Vibration control , 2018, Advanced Applications in Acoustics, Noise and Vibration.

[19]  Harvey Thomas Banks,et al.  Input-output stability for accelerometer control systems , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[20]  Daniel J. Inman,et al.  A Note on Pole Placement of Mechanical Systems , 1991 .

[21]  A. Kress,et al.  Eigenstructure assignment using inverse eigenvalue methods , 1995 .

[22]  Marios M. Polycarpou,et al.  Fault diagnosis of hyperbolic distributed parameter systems , 1996, Proceedings of the 1996 IEEE International Symposium on Intelligent Control.

[23]  R. Skelton Dynamic Systems Control: Linear Systems Analysis and Synthesis , 1988 .

[24]  S. Elhay,et al.  An algorithm for the partial multi-input pole assignment problem of a second-order control system , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[25]  P. Hughes,et al.  Errata: Controllability and Observability for Flexible Spacecraft , 1980 .

[26]  Hans Zwart,et al.  An Introduction to Infinite-Dimensional Linear Systems Theory , 1995, Texts in Applied Mathematics.

[27]  Daniel J. Inman,et al.  Square-root state estimation for second-order large space structuresmodels , 1989 .

[28]  Robust eigenstructure assignment in second-order control systems , 2000 .

[29]  Mark J. Balas Do All Linear Flexible Structures Have Convergent Second-Order Observers? , 1999 .