FLASH magnetohydrodynamic simulations of shock-generated magnetic field experiments

Abstract We report the results of benchmark FLASH magnetohydrodynamic (MHD) simulations of experiments conducted by the University of Oxford High Energy Density Laboratory Astrophysics group and its collaborators at the Laboratoire pour l'Utilisation des Lasers Intenses (LULI). In these experiments, a long-pulse laser illuminates a target in a chamber filled with Argon gas, producing shock waves that generate magnetic fields via the Biermann battery mechanism. We first outline the implementation of 2D cylindrical geometry in the unsplit MHD solver in FLASH and present results of verification tests. We then describe the results of benchmark 2D cylindrical MHD simulations of the LULI experiments using FLASH that explore the impact of external fields along with the possibility of magnetic field amplification by turbulence that is associated with the shock waves and that is induced by a grid placed in the gas-filled chamber.

[1]  Dinshaw Balsara,et al.  Second-Order-accurate Schemes for Magnetohydrodynamics with Divergence-free Reconstruction , 2003, astro-ph/0308249.

[2]  E. Ostriker,et al.  THE ATHENA ASTROPHYSICAL MAGNETOHYDRODYNAMICS CODE IN CYLINDRICAL GEOMETRY , 2010, 1004.2487.

[3]  B. Fryxell,et al.  FLASH: An Adaptive Mesh Hydrodynamics Code for Modeling Astrophysical Thermonuclear Flashes , 2000 .

[4]  Larry D. Libersky,et al.  Cylindrical smoothed particle hydrodynamics , 1993 .

[5]  Andrew Siegel,et al.  Extensible component-based architecture for FLASH, a massively parallel, multiphysics simulation code , 2009, Parallel Comput..

[6]  Dongwook Lee,et al.  An unsplit staggered mesh scheme for multidimensional magnetohydrodynamics , 2009, J. Comput. Phys..

[7]  S. Zalesak,et al.  Exact self-similar solutions for the magnetized Noh Z pinch problem , 2012 .

[8]  W. F. Noh Errors for calculations of strong shocks using an artificial viscosity and artificial heat flux , 1985 .

[9]  Shengtai Li An HLLC Riemann solver for magneto-hydrodynamics , 2005 .

[10]  K. Kusano,et al.  A multi-state HLL approximate Riemann solver for ideal magnetohydrodynamics , 2005 .

[11]  Bohdan Paczynski,et al.  Thick accretion disks and supercritical luminosities. , 1979 .

[12]  Dinshaw Balsara,et al.  Divergence-free adaptive mesh refinement for Magnetohydrodynamics , 2001 .

[13]  R. P. Drake,et al.  Generation of scaled protogalactic seed magnetic fields in laser-produced shock waves , 2012, Nature.

[14]  R. Cen,et al.  The Protogalactic Origin for Cosmic Magnetic Fields , 1996, astro-ph/9607141.

[15]  R. P. Drake,et al.  Criteria for Scaled Laboratory Simulations of Astrophysical MHD Phenomena , 2000 .

[16]  A. Ferrari,et al.  PLUTO: A Numerical Code for Computational Astrophysics , 2007, astro-ph/0701854.

[17]  R. E. Peterkin,et al.  Transport of Magnetic Flux in an Arbitrary Coordinate ALE Code , 1998 .

[18]  J. Dahlburg,et al.  Computational modeling of direct-drive fusion pellets and KrF-driven foil experiments , 1998 .

[19]  P. Woodward,et al.  The Piecewise Parabolic Method (PPM) for Gas Dynamical Simulations , 1984 .

[20]  R. Kulsrud,et al.  the Origin of Cosmic Magnetic Fields , 1996 .

[21]  Global Magnetohydrodynamical Simulations of Accretion Tori , 1999, astro-ph/9907385.