Exact cubature rules for symmetric functions

We employ a multivariate extension of the Gauss quadrature formula, originally due to Berens, Schmid and Xu [BSX95], so as to derive cubature rules for the integration of symmetric functions over hypercubes (or infinite limiting degenerations thereof) with respect to the densities of unitary random matrix ensembles. Our main application concerns the explicit implementation of a class of cubature rules associated with the Bernstein-Szego polynomials, which permit the exact integration of symmetric rational functions with prescribed poles at coordinate hyperplanes against unitary circular Jacobi distributions stemming from the Haar measures on the symplectic and the orthogonal groups.

[1]  S. L. Sobolev,et al.  Theory of Cubature Formulas , 1997 .

[2]  Walter Gautschi,et al.  The use of rational functions in numerical quadrature , 2001 .

[3]  J. Nakagawa,et al.  TABLEAU REPRESENTATION FOR MACDONALD'S NINTH VARIATION OF SCHUR FUNCTIONS , 2001 .

[4]  W. Gautschi A Survey of Gauss-Christoffel Quadrature Formulae , 1981 .

[5]  Pablo González-Vera,et al.  Quadrature formulas associated with rational modifications of the Chebyshev weight functions , 2006, Comput. Math. Appl..

[6]  S. L. Sobolev Cubature formulas and modern analysis : an introduction , 1995 .

[7]  Robert V. Moody,et al.  Cubature formulae for orthogonal polynomials in terms of elements of finite order of compact simple Lie groups , 2010, Adv. Appl. Math..

[8]  I. G. MacDonald,et al.  Symmetric functions and Hall polynomials , 1979 .

[9]  Francisco Marcellán,et al.  A new numerical quadrature formula on the unit circle , 2007, Numerical Algorithms.

[10]  Arieh Iserles,et al.  Quadrature methods for multivariate highly oscillatory integrals using derivatives , 2006, Math. Comput..

[11]  R. Cools,et al.  Cubature formulae and orthogonal polynomials , 2001 .

[12]  J. Humphreys Introduction to Lie Algebras and Representation Theory , 1973 .

[13]  Ronald Cools,et al.  Constructing cubature formulae: the science behind the art , 1997, Acta Numerica.

[14]  S. Sahi,et al.  Jack, Hall-littlewood and Macdonald Polynomials , 2006 .

[15]  Yuan Xu,et al.  On bivariate Gaussian cubature formulae , 1994 .

[16]  NEW QUADRATURE RULES FOR BERNSTEIN MEASURES ON THE INTERVAL , 2008 .

[17]  POLYNOMES DE JACOBI GENERALISES , 1991 .

[18]  P. Forrester Log-Gases and Random Matrices , 2010 .

[19]  W. Gautschi Orthogonal Polynomials: Computation and Approximation , 2004 .

[20]  M. Lassalle,et al.  Polynômes de Hermite généralisés , 1991 .

[21]  Yuan Xu,et al.  Minimal cubature rules and polynomial interpolation in two variables II , 2011, J. Approx. Theory.

[22]  The error norm of Gaussian quadrature formulae for weight functions of Bernstein-Szegö type , 1990 .

[23]  F. Peherstorfer On the remainder of Gaussian quadrature formulas for Bernstein-Szego , 1993 .

[24]  Walter Van Assche,et al.  Quadrature formulas based on rational interpolation , 1993, math/9307221.

[25]  Claudio Procesi,et al.  Lie Groups: An Approach through Invariants and Representations , 2006 .

[26]  B. Eynard,et al.  Random matrices. , 2015, 1510.04430.

[27]  Alexander P. Veselov,et al.  Jacobi-Trudy formula for generalised Schur polynomials , 2009, 0905.2557.

[28]  JIŘÍ HRIVNÁK,et al.  Discrete Transforms and Orthogonal Polynomials of (Anti)Symmetric Multivariate Cosine Functions , 2014, SIAM J. Numer. Anal..

[29]  Jirí Hrivnák,et al.  Cubature Formulas of Multivariate Polynomials Arising from Symmetric Orbit Functions , 2015, Symmetry.

[30]  I. MacDonald Schur functions: Theme and variations. , 1992 .

[31]  Yuan Xu Minimal cubature rules and polynomial interpolation in two variables , 2012, J. Approx. Theory.

[32]  Ronald F. Boisvert,et al.  NIST Handbook of Mathematical Functions , 2010 .

[33]  Walter Gautschi Gauss-type Quadrature Rules for Rational Functions , 1993 .

[34]  Asymptotics of multivariate orthogonal polynomials with hyperoctahedral symmetry , 2004, math/0412532.

[35]  B. Simon Representations of finite and compact groups , 1995 .

[36]  Yuan Xu,et al.  Discrete Fourier Analysis on Fundamental Domain and Simplex of Ad Lattice in d-Variables , 2010 .

[37]  Adhemar Bultheel,et al.  Rational Szego quadratures associated with Chebyshev weight functions , 2009, Math. Comput..

[38]  A. Stroud Approximate calculation of multiple integrals , 1973 .

[39]  Evelyne Hubert,et al.  A moment matrix approach to computing symmetric cubatures , 2015 .

[40]  Yuan Xu,et al.  Multivariate Gaussian cubature formulae , 1995 .

[41]  M. Sawa,et al.  Note on Cubature Formulae and Designs Obtained from Group Orbits , 2011, Canadian Journal of Mathematics.

[42]  Adhemar Bultheel,et al.  Quadrature and orthogonal rational functions , 2001 .

[43]  M. Lassalle,et al.  Polynômes de Laguerre généralisés , 1991 .

[44]  J. F. van Diejen,et al.  Bernstein–Szegö polynomials associated with root systems , 2007, 0704.3650.

[45]  Philip Rabinowitz,et al.  Methods of Numerical Integration , 1985 .

[46]  Sergei Sobolev Cubature formulas and modern analysis , 1993 .

[47]  Rene F. Swarttouw,et al.  Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.

[48]  P. Forrester Log-Gases and Random Matrices (LMS-34) , 2010 .

[49]  R. V. Moody,et al.  Gaussian Cubature Arising from Hybrid Characters of Simple Lie Groups , 2012, 1202.4415.

[50]  Felix Klein,et al.  An approach through invariants and representations , 2008 .

[51]  Yuan Xu,et al.  Orthogonal Polynomials of Several Variables , 2014, 1701.02709.

[52]  Eugene Strahov,et al.  Products and ratios of characteristic polynomials of random Hermitian matrices , 2003 .