Computation of intra-operative brain shift using dynamic relaxation.

Many researchers have proposed the use of biomechanical models for high accuracy soft organ non-rigid image registration, but one main problem in using comprehensive models is the long computation time required to obtain the solution. In this paper we propose to use the Total Lagrangian formulation of the Finite Element method together with Dynamic Relaxation for computing intra-operative organ deformations. We study the best ways of estimating the parameters involved and we propose a termination criteria that can be used in order to obtain fast results with prescribed accuracy. The simulation results prove the accuracy and computational efficiency of the method, even in cases involving large deformations, nonlinear materials and contacts.

[1]  Terry M. Peters,et al.  Medical Image Computing and Computer-Assisted Intervention - MICCAI 2003 , 2003, Lecture Notes in Computer Science.

[2]  Y. Fung,et al.  Biomechanics: Mechanical Properties of Living Tissues , 1981 .

[3]  Karl Rohr,et al.  Biomechanically based simulation of brain deformations for intraoperative image correction: coupling of elastic and fluid models , 2000, Medical Imaging: Image Processing.

[4]  Graham F. Carey A unified approach to three finite element theories for geometric nonlinearity , 1974 .

[5]  Karol Miller,et al.  Realistic And Efficient Brain-Skull Interaction Model For Brain Shift Computation , 2008 .

[6]  Robert L. Galloway,et al.  Cortical surface registration for image-guided neurosurgery using laser-range scanning , 2003, IEEE Transactions on Medical Imaging.

[7]  Keith D. Paulsen,et al.  Estimating Cortical Surface Motion Using Stereopsis for Brain Deformation Models , 2003, MICCAI.

[8]  K. Miller,et al.  On the unimportance of constitutive models in computing brain deformation for image-guided surgery , 2009, Biomechanics and modeling in mechanobiology.

[9]  K. Rohr,et al.  Biomechanical modeling of the human head for physically based, nonrigid image registration , 1999, IEEE Transactions on Medical Imaging.

[10]  Graham F. Carey,et al.  Introduction to Finite Element Analysis: Theory and Application , 1973 .

[11]  H. Levine Medical Imaging , 2010, Annals of Biomedical Engineering.

[12]  Karol Miller,et al.  Non-locking Tetrahedral Finite Element for Surgical Simulation. , 2009, Communications in numerical methods in engineering.

[13]  T. J.R. Hughes,et al.  ANALYSIS OF TRANSIENT ALGORITHMS WITH PARTICULAR REFERENCE TO STABILITY BEHAVIOR. , 1983 .

[14]  Karl Rohr,et al.  A Biomechanical Model of the Human Head for Elasitc Registration of MR-Images , 1999, Bildverarbeitung für die Medizin.

[15]  Karol Miller,et al.  Brain Shift Computation Using a Fully Nonlinear Biomechanical Model , 2005, MICCAI.

[16]  K. Chinzei,et al.  Constitutive modelling of brain tissue: experiment and theory. , 1997, Journal of biomechanics.

[17]  N. Cristescu,et al.  On dynamic relaxation , 1967 .

[18]  Manolis Papadrakakis,et al.  A method for the automatic evaluation of the dynamic relaxation parameters , 1981 .

[19]  Karl Rohr,et al.  Coupling of fluid and elastic models for biomechanical simulations of brain deformations using FEM , 2002, Medical Image Anal..

[20]  Wing Kam Liu,et al.  Nonlinear Finite Elements for Continua and Structures , 2000 .

[21]  Karol Miller,et al.  Patient-specific model of brain deformation: application to medical image registration. , 2007, Journal of biomechanics.

[22]  K. Bathe Finite Element Procedures , 1995 .

[23]  T. Belytschko,et al.  Computational Methods for Transient Analysis , 1985 .

[24]  Ron Kikinis,et al.  Real-time registration of volumetric brain MRI by biomechanical simulation of deformation during image guided neurosurgery , 2002 .

[25]  J. Tinsley Oden,et al.  Finite Elements: Special Problems in Solid Mechanics , 1984 .

[26]  Hervé Delingette,et al.  Patient-Specific Biomechanical Model of the Brain: Application to Parkinson's Disease Procedure , 2003, IS4TH.

[27]  Karol Miller,et al.  An efficient hourglass control implementation for the uniform strain hexahedron using the Total Lagrangian formulation , 2007 .

[28]  Simon K. Warfield,et al.  Deformable Modeling for Characterizing Biomedical Shape Changes , 2000, DGCI.

[29]  T. Wobbes [The operating room of the future]. , 2000, Nederlands tijdschrift voor geneeskunde.

[30]  Ron Kikinis,et al.  Real-Time Biomechanical Simulation of Volumetric Brain Deformation for Image Guided Neurosurgery , 2000, ACM/IEEE SC 2000 Conference (SC'00).

[31]  Gary E. Christensen,et al.  Consistent image registration , 2001, IEEE Transactions on Medical Imaging.

[32]  Carl-Fredrik Westin,et al.  Capturing intraoperative deformations: research experience at Brigham and Women's hospital , 2005, Medical Image Anal..

[33]  J. P. Paul,et al.  Biomechanics , 1966 .

[34]  K. Chinzei,et al.  Mechanical properties of brain tissue in tension. , 2002, Journal of biomechanics.

[35]  K. Miller,et al.  Total Lagrangian explicit dynamics finite element algorithm for computing soft tissue deformation , 2006 .

[36]  K Miller,et al.  Mechanical properties of brain tissue in-vivo: experiment and computer simulation. , 2000, Journal of biomechanics.