High-resolution structures of RmlC from Streptococcus suis in complex with substrate analogs locate the active site of this class of enzyme.

[1]  Gordon Leonard,et al.  Variation on a theme of SDR. dTDP-6-deoxy-L- lyxo-4-hexulose reductase (RmlD) shows a new Mg2+-dependent dimerization mode. , 2002, Structure.

[2]  J. Naismith,et al.  Epimerases: structure, function and mechanism , 2001, Cellular and Molecular Life Sciences CMLS.

[3]  C. Whitfield,et al.  The crystal structure of dTDP-D-Glucose 4,6-dehydratase (RmlB) from Salmonella enterica serovar Typhimurium, the second enzyme in the dTDP-l-rhamnose pathway. , 2001, Journal of molecular biology.

[4]  J. Naismith,et al.  The structural basis of the catalytic mechanism and regulation of glucose‐1‐phosphate thymidylyltransferase (RmlA) , 2000, The EMBO journal.

[5]  J. Naismith,et al.  The rhamnose pathway. , 2000, Current opinion in structural biology.

[6]  X. He,et al.  Novel enzymatic mechanisms in carbohydrate metabolism. , 2000, Chemical reviews.

[7]  C. Walsh,et al.  Deoxysugars in glycopeptide antibiotics: enzymatic synthesis of TDP-L-epivancosamine in chloroeremomycin biosynthesis. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[8]  E. Pai,et al.  Crystal Structure of dTDP-4-keto-6-deoxy-d-hexulose 3,5-Epimerase fromMethanobacterium thermoautotrophicum Complexed with dTDP* , 2000, The Journal of Biological Chemistry.

[9]  J. Naismith,et al.  RmlC, the third enzyme of dTDP-L-rhamnose pathway, is a new class of epimerase , 2000, Nature Structural Biology.

[10]  C. Whitfield,et al.  Characterization of dTDP-4-dehydrorhamnose 3,5-Epimerase and dTDP-4-dehydrorhamnose Reductase, Required for dTDP-l-rhamnose Biosynthesis in Salmonella enterica Serovar Typhimurium LT2* , 1999, The Journal of Biological Chemistry.

[11]  Anastassis Perrakis,et al.  Automated protein model building combined with iterative structure refinement , 1999, Nature Structural Biology.

[12]  M. Smits,et al.  Identification and Characterization of thecps Locus of Streptococcus suis Serotype 2: the Capsule Protects against Phagocytosis and Is an Important Virulence Factor , 1999, Infection and Immunity.

[13]  Thomas C. Terwilliger,et al.  Automated MAD and MIR structure solution , 1999, Acta crystallographica. Section D, Biological crystallography.

[14]  B. Wanner,et al.  Conversion of dTDP-4-keto-6-deoxyglucose to free dTDP-4-keto-rhamnose by the rmIC gene products of Escherichia coli and Mycobacterium tuberculosis. , 1999, Microbiology.

[15]  M. Chengappa,et al.  Streptococcus Suis: Past and Present , 1997, Veterinary Research Communications.

[16]  G. Murshudov,et al.  Refinement of macromolecular structures by the maximum-likelihood method. , 1997, Acta crystallographica. Section D, Biological crystallography.

[17]  M. Skurnik,et al.  Molecular and chemical characterization of the lipopolysaccharide O‐antigen and its role in the virulence of Yersinia enterocolitica serotype O:8 , 1997, Molecular microbiology.

[18]  N. Kubo,et al.  Targeting presequence acquisition after mitochondrial gene transfer to the nucleus occurs by duplication of existing targeting signals. , 1996, The EMBO journal.

[19]  P. Frey,et al.  Molecular structure of the NADH/UDP-glucose abortive complex of UDP-galactose 4-epimerase from Escherichia coli: implications for the catalytic mechanism. , 1996, Biochemistry.

[20]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.

[21]  J. Navaza,et al.  AMoRe: an automated package for molecular replacement , 1994 .

[22]  N. Vyas Atomic features of protein-carbohydrate interactions , 1991 .

[23]  J. Zou,et al.  Improved methods for building protein models in electron density maps and the location of errors in these models. , 1991, Acta crystallographica. Section A, Foundations of crystallography.

[24]  P. Brennan,et al.  Evidence for the nature of the link between the arabinogalactan and peptidoglycan of mycobacterial cell walls. , 1990, The Journal of biological chemistry.

[25]  J. Y. Tai,et al.  The type-specific polysaccharides of Streptococcus suis , 1978, The Journal of experimental medicine.

[26]  L. Glaser,et al.  The mechanism of 6-deoxyhexose synthesis. II. Conversion of deoxythymidine diphosphate 4-keto-6-deoxy-D-glucose to deoxythymidine diphosphate L-rhamnose. , 1968, The Journal of biological chemistry.

[27]  D. Maskell,et al.  Toward a structural understanding of the dehydratase mechanism. , 2002, Structure.

[28]  Z. Otwinowski,et al.  [20] Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[29]  S. Doublié [29] Preparation of selenomethionyl proteins for phase determination. , 1997, Methods in enzymology.

[30]  Anders Liljas,et al.  2 Evolutionary and Structural Relationships among Dehydrogenases , 1975 .

[31]  S. Kornfeld,et al.  The enzymic synthesis of thymidine-linked sugars. I. Thymidine diphosphate glucose. , 1961, The Journal of biological chemistry.