High-entropy ceramics

[1]  K. Kuramoto,et al.  A new class of spinel high-entropy oxides with controllable magnetic properties , 2020 .

[2]  Yanchun Zhou,et al.  High entropy (Yb0.25Y0.25Lu0.25Er0.25)2SiO5 with strong anisotropy in thermal expansion , 2020 .

[3]  Teng Zhai,et al.  Improving the Cycling Stability of Metal–Nitride Supercapacitor Electrodes with a Thin Carbon Shell , 2014, Advanced Energy Materials.

[4]  Beilin Ye,et al.  Synthesis of high‐purity high‐entropy metal diboride powders by boro/carbothermal reduction , 2019, Journal of the American Ceramic Society.

[5]  G. Hilmas,et al.  Low‐temperature sintering of single‐phase, high‐entropy carbide ceramics , 2019, Journal of the American Ceramic Society.

[6]  Meihong Fan,et al.  A high-entropy metal oxide as chemical anchor of polysulfide for lithium-sulfur batteries , 2019 .

[7]  G. Radnóczi,et al.  Reactive sputter deposition of CoCrCuFeNi in oxygen/argon mixtures , 2019, Surface and Coatings Technology.

[8]  R. Sisson,et al.  Exploration of high entropy ceramics (HECs) with computational thermodynamics - A case study with LaMnO3±δ , 2019, Materials & Design.

[9]  P. Rutkowski,et al.  Mechanochemical Synthesis of (Co,Cu,Mg,Ni,Zn)O High-Entropy Oxide and Its Physicochemical Properties , 2019, Journal of Electronic Materials.

[10]  J. Maria,et al.  Magnetic frustration control through tunable stereochemically driven disorder in entropy-stabilized oxides , 2019, Physical Review Materials.

[11]  Zhou Yanchun,et al.  (La0.2Ce0.2Nd0.2Sm0.2Eu0.2)2Zr2O7: A novel high-entropy ceramic with low thermal conductivity and sluggish grain growth rate , 2019, Journal of Materials Science & Technology.

[12]  K. Kuramoto,et al.  Facile synthesis and ferrimagnetic property of spinel (CoCrFeMnNi)3O4 high-entropy oxide nanocrystalline powder , 2019, Journal of Molecular Structure.

[13]  J. Qiu,et al.  Microstructure and mechanical properties of high-entropy borides derived from boro/carbothermal reduction , 2019, Journal of the European Ceramic Society.

[14]  T. Wen,et al.  One‐step synthesis of coral‐like high‐entropy metal carbide powders , 2019, Journal of the American Ceramic Society.

[15]  Yonggang Yao,et al.  Highly efficient decomposition of ammonia using high-entropy alloy catalysts , 2019, Nature Communications.

[16]  Yanchun Zhou,et al.  (TiZrHf)P2O7: An equimolar multicomponent or high entropy ceramic with good thermal stability and low thermal conductivity , 2019, Journal of Materials Science & Technology.

[17]  K. Kuramoto,et al.  Solution combustion synthesis and magnetic property of rock-salt (Co0.2Cu0.2Mg0.2Ni0.2Zn0.2)O high-entropy oxide nanocrystalline powder , 2019, Journal of Magnetism and Magnetic Materials.

[18]  M. Marques,et al.  Recent advances and applications of machine learning in solid-state materials science , 2019, npj Computational Materials.

[19]  P. Heitjans,et al.  Multi-anionic and -cationic compounds: new high entropy materials for advanced Li-ion batteries , 2019, Energy & Environmental Science.

[20]  Guo‐Jun Zhang,et al.  High entropy carbide ceramics from different starting materials , 2019, Journal of the European Ceramic Society.

[21]  Guo‐Jun Zhang,et al.  High-entropy pyrochlores with low thermal conductivity for thermal barrier coating materials , 2019, Journal of Advanced Ceramics.

[22]  C. García-Garrido,et al.  Low temperature synthesis of an equiatomic (TiZrHfVNb)C5 high entropy carbide by a mechanically-induced carbon diffusion route , 2019 .

[23]  X. Ren,et al.  Equiatomic quaternary (Y1/4Ho1/4Er1/4Yb1/4)2SiO5 silicate: A perspective multifunctional thermal and environmental barrier coating material , 2019, Scripta Materialia.

[24]  Jinyong Zhang,et al.  Understanding the electronic structure, mechanical properties, and thermodynamic stability of (TiZrHfNbTa)C combined experiments and first-principles simulation , 2019, Journal of Applied Physics.

[25]  M. Kunz,et al.  Stability and Compressibility of Cation-Doped High-Entropy Oxide MgCoNiCuZnO5 , 2019, The Journal of Physical Chemistry C.

[26]  Shi-ze Yang,et al.  Mechanochemical Nonhydrolytic Sol–Gel-Strategy for the Production of Mesoporous Multimetallic Oxides , 2019, Chemistry of Materials.

[27]  D. Vinnik,et al.  High-entropy oxide phases with magnetoplumbite structure , 2019, Ceramics International.

[28]  Jia Liu,et al.  High-entropy environmental barrier coating for the ceramic matrix composites , 2019, Journal of the European Ceramic Society.

[29]  Caizhuang Wang,et al.  First‐principles study, fabrication, and characterization of (Hf 0.2 Zr 0.2 Ta 0.2 Nb 0.2 Ti 0.2 )C high‐entropy ceramic , 2019, Journal of the American Ceramic Society.

[30]  Yanchun Zhou,et al.  High porosity and low thermal conductivity high entropy (Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)C , 2019, Journal of Materials Science & Technology.

[31]  Dierk Raabe,et al.  High-entropy alloys , 2019, Nature Reviews Materials.

[32]  Z. Grzesik,et al.  Defect structure and transport properties in (Co,Cu,Mg,Ni,Zn)O high entropy oxide , 2019, Journal of the European Ceramic Society.

[33]  S. Curtarolo,et al.  Unavoidable disorder and entropy in multi-component systems , 2019, npj Computational Materials.

[34]  H. Hahn,et al.  On the homogeneity of high entropy oxides: An investigation at the atomic scale , 2019, Scripta Materialia.

[35]  Ying Li,et al.  High-entropy oxides 10La2O3-20TiO2-10Nb2O5-20WO3-20ZrO2 amorphous spheres prepared by containerless solidification , 2019, Materials Letters.

[36]  Shi-ze Yang,et al.  Mechanochemical Synthesis of High Entropy Oxide Materials under Ambient Conditions: Dispersion of Catalysts via Entropy Maximization , 2019, ACS Materials Letters.

[37]  S. Holé,et al.  Charge compensation mechanisms in Li‐substituted high‐entropy oxides and influence on Li superionic conductivity , 2019, Journal of the American Ceramic Society.

[38]  Hanzhu Zhang,et al.  Processing and Characterization of Refractory Quaternary and Quinary High-Entropy Carbide Composite , 2019, Entropy.

[39]  Caizhuang Wang,et al.  First-principles study, fabrication and characterization of (Zr0.25Nb0.25Ti0.25V0.25)C high-entropy ceramics , 2019, Acta Materialia.

[40]  D. Miracle High entropy alloys as a bold step forward in alloy development , 2019, Nature Communications.

[41]  F. Akhtar,et al.  A high-entropy B4(HfMo2TaTi)C and SiC ceramic composite. , 2019, Dalton transactions.

[42]  Y. Sakka,et al.  High-temperature flexural strength performance of ternary high-entropy carbide consolidated via spark plasma sintering of TaC, ZrC and NbC , 2019, Scripta Materialia.

[43]  Shikuan Sun,et al.  Dense high-entropy boride ceramics with ultra-high hardness , 2019, Scripta Materialia.

[44]  Chao Yang,et al.  Colossal Permittivity Materials as Superior Dielectrics for Diverse Applications , 2019, Advanced Functional Materials.

[45]  D. Vinnik,et al.  Extremely Polysubstituted Magnetic Material Based on Magnetoplumbite with a Hexagonal Structure: Synthesis, Structure, Properties, Prospects , 2019, Nanomaterials.

[46]  S. Grasso,et al.  High entropy Sr((Zr0.94Y0.06)0.2Sn0.2Ti0.2Hf0.2Mn0.2)O3−x perovskite synthesis by reactive spark plasma sintering , 2019, Journal of Asian Ceramic Societies.

[47]  G. Hilmas,et al.  Synthesis of single-phase high-entropy carbide powders , 2019, Scripta Materialia.

[48]  Xingjun Liu,et al.  Nanoporous high-entropy alloys for highly stable and efficient catalysts , 2019, Journal of Materials Chemistry A.

[49]  Yanhua Cui,et al.  A high entropy oxide (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O) with superior lithium storage performance , 2019, Journal of Alloys and Compounds.

[50]  Qingsong Wang,et al.  High‐Entropy Oxides: Fundamental Aspects and Electrochemical Properties , 2019, Advanced materials.

[51]  Houzheng Wu,et al.  A high entropy silicide by reactive spark plasma sintering , 2019, Journal of Advanced Ceramics.

[52]  K. Jacobsen,et al.  High-Entropy Alloys as a Discovery Platform for Electrocatalysis , 2019, Joule.

[53]  Qingsong Wang,et al.  High entropy oxides as anode material for Li-ion battery applications: A practical approach , 2019, Electrochemistry Communications.

[54]  Tyler J. Harrington,et al.  Phase stability and mechanical properties of novel high entropy transition metal carbides , 2019, Acta Materialia.

[55]  T. Wen,et al.  Synthesis of superfine high-entropy metal diboride powders , 2019, Scripta Materialia.

[56]  Gnanamoorthi Venkadesan,et al.  Experimental investigation of Al2O3/8YSZ and CeO2/8YSZ plasma sprayed thermal barrier coating on diesel engine , 2019, Ceramics International.

[57]  H. Takagi,et al.  Long-range magnetic ordering in rocksalt-type high-entropy oxides , 2019, Applied Physics Letters.

[58]  Tyler J. Harrington,et al.  A high-entropy silicide: (Mo0.2Nb0.2Ta0.2Ti0.2W0.2)Si2 , 2019, Journal of Materiomics.

[59]  Jiaqiang Yan,et al.  Long-Range Antiferromagnetic Order in a Rocksalt High Entropy Oxide , 2019, Chemistry of Materials.

[60]  R. Brand,et al.  High-entropy oxides: An emerging prospect for magnetic rare-earth transition metal perovskites , 2019, Physical Review Materials.

[61]  X. Bai,et al.  Diffusion-controlled alloying of single-phase multi-principal transition metal carbides with high toughness and low thermal diffusivity , 2018, Applied Physics Letters.

[62]  M. Buongiorno Nardelli,et al.  Coordination corrected ab initio formation enthalpies , 2018, npj Computational Materials.

[63]  Robert M. Hanson,et al.  The AFLOW Library of Crystallographic Prototypes: Part 2 , 2018, Computational Materials Science.

[64]  Shou-Yi Chang,et al.  Multiprincipal-Element AlCrTaTiZr-Nitride Nanocomposite Film of Extremely High Thermal Stability as Diffusion Barrier for Cu Metallization , 2009, ECS Transactions.

[65]  W. Kriven,et al.  High‐entropy, phase‐constrained, lanthanide sesquioxide , 2019, Journal of the American Ceramic Society.

[66]  J. Schoenung,et al.  Entropic phase transformation in nanocrystalline high entropy oxides , 2018, Materials Research Letters.

[67]  Jinyong Zhang,et al.  High-entropy carbide: A novel class of multicomponent ceramics , 2018, Ceramics International.

[68]  Bi‐Yu Tang,et al.  Structural, mechanical and electronic properties of (TaNbHfTiZr)C high entropy carbide under pressure: Ab initio investigation , 2018, Physica B: Condensed Matter.

[69]  U. Waghmare,et al.  Stabilizing n-Type Cubic GeSe by Entropy-Driven Alloying of AgBiSe2 : Ultralow Thermal Conductivity and Promising Thermoelectric Performance. , 2018, Angewandte Chemie.

[70]  Cormac Toher,et al.  High-entropy high-hardness metal carbides discovered by entropy descriptors , 2018, Nature Communications.

[71]  A. Ludwig,et al.  Discovery of a Multinary Noble Metal–Free Oxygen Reduction Catalyst , 2018, Advanced Energy Materials.

[72]  Christina M. Rost,et al.  Charge‐Induced Disorder Controls the Thermal Conductivity of Entropy‐Stabilized Oxides , 2018, Advanced materials.

[73]  U. Waghmare,et al.  Stabilizing n‐Type Cubic GeSe by Entropy‐Driven Alloying of AgBiSe 2 : Ultralow Thermal Conductivity and Promising Thermoelectric Performance , 2018, Angewandte Chemie.

[74]  Q. Shen,et al.  Microstructural evolution and mechanical properties of (Mg,Co,Ni,Cu,Zn)O high‐entropy ceramics , 2018, Journal of the American Ceramic Society.

[75]  M. Reece,et al.  Data-Driven Design of Ecofriendly Thermoelectric High-Entropy Sulfides. , 2018, Inorganic chemistry.

[76]  L. An,et al.  A five-component entropy-stabilized fluorite oxide , 2018, Journal of the European Ceramic Society.

[77]  Cormac Toher,et al.  Data-driven design of inorganic materials with the Automatic Flow Framework for Materials Discovery , 2018, MRS Bulletin.

[78]  J. Maria,et al.  Epitaxial entropy-stabilized oxides: growth of chemically diverse phases via kinetic bombardment , 2018, MRS Communications.

[79]  Qingsong Wang,et al.  High entropy oxides for reversible energy storage , 2018, Nature Communications.

[80]  W. Chueh,et al.  The use of poly-cation oxides to lower the temperature of two-step thermochemical water splitting , 2018 .

[81]  Ya-Ping Wang,et al.  Ab Initio Prediction of Mechanical and Electronic Properties of Ultrahigh Temperature High‐Entropy Ceramics (Hf0.2Zr0.2Ta0.2M0.2Ti0.2)B2 (M = Nb, Mo, Cr) , 2018 .

[82]  Tyler J. Harrington,et al.  High-entropy fluorite oxides , 2018, Journal of the European Ceramic Society.

[83]  M. Widom Modeling the structure and thermodynamics of high-entropy alloys , 2018, Journal of Materials Research.

[84]  Congyuan Zeng,et al.  Electrocatalytic activity of high-entropy alloys toward oxygen evolution reaction , 2018, MRS Communications.

[85]  L. Nyholm,et al.  Synthesis and characterization of multicomponent (CrNbTaTiW)C films for increased hardness and corrosion resistance , 2018, Materials & Design.

[86]  K. Butler,et al.  Machine learning for molecular and materials science , 2018, Nature.

[87]  Jiaqiang Yan,et al.  Single-crystal high entropy perovskite oxide epitaxial films , 2018, Physical Review Materials.

[88]  M. Chi,et al.  Entropy-stabilized metal oxide solid solutions as CO oxidation catalysts with high-temperature stability , 2018 .

[89]  S. Grasso,et al.  Processing and Properties of High-Entropy Ultra-High Temperature Carbides , 2018, Scientific Reports.

[90]  Jun Hu,et al.  Mechanochemical‐Assisted Synthesis of High‐Entropy Metal Nitride via a Soft Urea Strategy , 2018, Advanced materials.

[91]  M. Nastasi,et al.  (Hf 0.2 Zr 0.2 Ta 0.2 Nb 0.2 Ti 0.2 )C high‐entropy ceramics with low thermal conductivity , 2018, Journal of the American Ceramic Society.

[92]  Guoliang Zhang,et al.  High entropy alloy as a highly active and stable electrocatalyst for hydrogen evolution reaction , 2018, Electrochimica Acta.

[93]  J. Kao,et al.  Effects of deposition parameters on the structure and mechanical properties of high-entropy alloy nitride films , 2018 .

[94]  J. Maria,et al.  Evidence for Jahn-Teller compression in the (Mg, Co, Ni, Cu, Zn)O entropy-stabilized oxide: A DFT study , 2018 .

[95]  Manfred Martin,et al.  Synthesis and microstructure of the (Co,Cr,Fe,Mn,Ni) 3 O 4 high entropy oxide characterized by spinel structure , 2018 .

[96]  Steven D. Lacey,et al.  Carbothermal shock synthesis of high-entropy-alloy nanoparticles , 2018, Science.

[97]  V. Sglavo,et al.  Synthesis and sintering of (Mg, Co, Ni, Cu, Zn)O entropy-stabilized oxides obtained by wet chemical methods , 2018, Journal of Materials Science.

[98]  P. Mayrhofer,et al.  High-entropy ceramic thin films; A case study on transition metal diborides , 2018, 1802.10260.

[99]  Cormac Toher,et al.  The search for high entropy alloys: A high-throughput ab-initio approach , 2017, Acta Materialia.

[100]  Yayuan Liu,et al.  High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials , 2018, Nature Catalysis.

[101]  Tyler J. Harrington,et al.  A new class of high-entropy perovskite oxides , 2018 .

[102]  C. M. Handley,et al.  Phase stability and distortion in high-entropy oxides , 2017 .

[103]  H. Hahn,et al.  Rare earth and transition metal based entropy stabilised perovskite type oxides , 2017 .

[104]  J. Heron,et al.  Giant Enhancement of Exchange Coupling in Entropy-Stabilized Oxide Heterostructures , 2017, Scientific Reports.

[105]  Gerbrand Ceder,et al.  Electronic-Structure Origin of Cation Disorder in Transition-Metal Oxides. , 2017, Physical review letters.

[106]  M. Widom,et al.  Computational modeling of high-entropy alloys: Structures, thermodynamics and elasticity , 2017 .

[107]  H. Hahn,et al.  Multicomponent equiatomic rare earth oxides with a narrow band gap and associated praseodymium multivalency. , 2017, Dalton transactions.

[108]  M. Hanfland,et al.  First hexagonal close packed high-entropy alloy with outstanding stability under extreme conditions and electrocatalytic activity for methanol oxidation , 2017 .

[109]  Daniel B. Miracle,et al.  High-Entropy Alloys: A Current Evaluation of Founding Ideas and Core Effects and Exploring “Nonlinear Alloys” , 2017, JOM.

[110]  Su-Jien Lin,et al.  Effects of CH4 flow ratio on the structure and properties of reactively sputtered (CrNbSiTiZr)Cx coatings , 2017 .

[111]  Christina M. Rost,et al.  Nanoscale Compositional Analysis of a Thermally Processed Entropy-Stabilized Oxide via Correlative TEM and APT , 2017, Microscopy and Microanalysis.

[112]  P. Liaw,et al.  First-principles prediction of high-entropy-alloy stability , 2017, npj Computational Materials.

[113]  J. Maria,et al.  Local structure of the MgxNixCoxCuxZnxO(x=0.2) entropy‐stabilized oxide: An EXAFS study , 2017 .

[114]  S. Franger,et al.  Controlled Jahn-Teller distortion in (MgCoNiCuZn)O-based high entropy oxides , 2017 .

[115]  M. Karpets,et al.  Production and mechanical properties of high-entropic carbide based on the TiZrHfVNbTa multicomponent alloy , 2017, Journal of Superhard Materials.

[116]  C. Kübel,et al.  Multicomponent equiatomic rare earth oxides , 2017 .

[117]  Arumugam Manthiram,et al.  Lithium battery chemistries enabled by solid-state electrolytes , 2017 .

[118]  H. Hahn,et al.  Nanocrystalline multicomponent entropy stabilised transition metal oxides , 2017 .

[119]  Tyler J. Harrington,et al.  High-Entropy Metal Diborides: A New Class of High-Entropy Materials and a New Type of Ultrahigh Temperature Ceramics , 2016, Scientific Reports.

[120]  D. Miracle,et al.  A critical review of high entropy alloys and related concepts , 2016 .

[121]  X. J. Liu,et al.  Development of a novel high-entropy alloy with eminent efficiency of degrading azo dye solutions , 2016, Scientific Reports.

[122]  Corey Oses,et al.  Modeling Off-Stoichiometry Materials with a High-Throughput Ab-Initio Approach , 2016 .

[123]  Cormac Toher,et al.  Charge compensation and electrostatic transferability in three entropy-stabilized oxides: Results from density functional theory calculations , 2016 .

[124]  F. Miculescu,et al.  In vitro corrosion resistance of Si containing multi‐principal element carbide coatings , 2016 .

[125]  I. Pană,et al.  In Vitro Biocompatibility of Si Alloyed Multi-Principal Element Carbide Coatings , 2016, PloS one.

[126]  S. Franger,et al.  Room temperature lithium superionic conductivity in high entropy oxides , 2016 .

[127]  C. Tasan,et al.  Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off , 2016, Nature.

[128]  S. Franger,et al.  Colossal dielectric constant in high entropy oxides , 2016, 1602.07842.

[129]  Du-Cheng Tsai,et al.  Structure and characteristics of reactive magnetron sputtered (CrTaTiVZr)N coatings , 2015 .

[130]  M. Deng,et al.  Oxidation resistance and characterization of (AlCrMoTaTi)-Six-N coating deposited via magnetron sputtering , 2015 .

[131]  Jacob L. Jones,et al.  Entropy-stabilized oxides , 2015, Nature Communications.

[132]  Dustin Banham,et al.  A review of the stability and durability of non-precious metal catalysts for the oxygen reduction reaction in proton exchange membrane fuel cells , 2015 .

[133]  Swe-Kai Chen,et al.  The Microstructures and Electrical Resistivity of (Al, Cr, Ti)FeCoNiOx High-Entropy Alloy Oxide Thin Films , 2015 .

[134]  M. Widom Entropy and Diffuse Scattering: Comparison of NbTiVZr and CrMoNbV , 2015, Metallurgical and Materials Transactions A.

[135]  Paul R. C. Kent,et al.  Criteria for Predicting the Formation of Single-Phase High-Entropy Alloys , 2015 .

[136]  C. Woodward,et al.  Accelerated exploration of multi-principal element alloys with solid solution phases , 2015, Nature Communications.

[137]  Oleksandr Viacheslavovych Bondar,et al.  Microstructure, physical and chemical properties of nanostructured (Ti–Hf–Zr–V–Nb)N coatings under different deposition conditions , 2014 .

[138]  J. Yeh,et al.  High-Entropy Alloys: A Critical Review , 2014 .

[139]  Y. Tong,et al.  Quinary PdNiCoCuFe Alloy Nanotube Arrays as Efficient Electrocatalysts for Methanol Oxidation , 2014 .

[140]  Ming-Hua Shiao,et al.  Interfacial reactions and characterization of (TiVCrZrHf)N thin films during thermal treatment , 2014 .

[141]  M. Braic,et al.  Deposition and characterization of multi-principal-element (CuSiTiYZr)C coatings , 2013 .

[142]  Ming-Hua Shiao,et al.  Structural morphology and characterization of (AlCrMoTaTi)N coating deposited via magnetron sputtering , 2013 .

[143]  Hsun-Feng Hsu,et al.  Improved Diffusion-Resistant Ability of Multicomponent Nitrides: From Unitary TiN to Senary High-Entropy (TiTaCrZrAlRu)N , 2013 .

[144]  M. Widom,et al.  Prediction of A2 to B2 Phase Transition in the High-Entropy Alloy Mo-Nb-Ta-W , 2013, 1306.5043.

[145]  J. Yeh,et al.  Structure and properties of two Al-Cr-Nb-Si-Ti high-entropy nitride coatings , 2013 .

[146]  Marco Buongiorno Nardelli,et al.  The high-throughput highway to computational materials design. , 2013, Nature materials.

[147]  V. Braic,et al.  Nanostructured multi-element (TiZrNbHfTa)N and (TiZrNbHfTa)C hard coatings , 2012 .

[148]  J. Yeh,et al.  Mechanical performance and nanoindenting deformation of (AlCrTaTiZr)NCy multi-component coatings co-sputtered with bias , 2012 .

[149]  O. Sobol,et al.  Reproducibility of the single-phase structural state of the multielement high-entropy Ti-V-Zr-Nb-Hf system and related superhard nitrides formed by the vacuum-arc method , 2012 .

[150]  F. Wei,et al.  An oxygen reduction electrocatalyst based on carbon nanotube-graphene complexes. , 2012, Nature nanotechnology.

[151]  S. Panseri,et al.  Characterization of multi-principal-element (TiZrNbHfTa)N and (TiZrNbHfTa)C coatings for biomedical applications. , 2012, Journal of the mechanical behavior of biomedical materials.

[152]  J. Yeh,et al.  Effect of nitrogen content and substrate bias on mechanical and corrosion properties of high-entropy films (AlCrSiTiZr)100 −xNx , 2012 .

[153]  Vladan Stevanović,et al.  Correcting Density Functional Theory for Accurate Predictions of Compound Enthalpies of Formation:Fitted elemental-phase Reference Energies (FERE) , 2012 .

[154]  Shou-Yi Chang,et al.  4-nm thick multilayer structure of multi-component (AlCrRuTaTiZr)Nx as robust diffusion barrier for Cu interconnects , 2012 .

[155]  Chun-Huei Tsau,et al.  Strong amorphization of high-entropy AlBCrSiTi nitride film , 2012 .

[156]  W. Cho,et al.  Effects of DC Bias on the Microstructure, Residual Stress and Hardness Properties of TiVCrZrTaN Films by Reactive RF Magnetron Sputtering , 2012 .

[157]  C. Tsau,et al.  The Low Electrical Resistivity of the High-entropy Alloy Oxide Thin Films , 2012 .

[158]  Ming-Hua Shiao,et al.  Thermally Stable TiVCrZrHf Nitride Films as Diffusion Barriers in Copper Metallization , 2012 .

[159]  M. Deng,et al.  Effects of substrate temperature on the structure and mechanical properties of (TiVCrZrHf)N coatings , 2011 .

[160]  Shou-Yi Chang,et al.  Microstructures and mechanical properties of multi-component (AlCrTaTiZr)NxCy nanocomposite coatings , 2011 .

[161]  J. Yeh,et al.  Effects of silicon content on the structure and mechanical properties of (AlCrTaTiZr)–Six–N coatings by reactive RF magnetron sputtering , 2011 .

[162]  J. Yeh,et al.  Structural and mechanical properties of multi-element (AlCrMoTaTiZr)Nx coatings by reactive magnetron sputtering , 2011 .

[163]  J. Yeh,et al.  TiFeCoNi oxide thin film – A new composition with extremely low electrical resistivity at room temperature , 2011 .

[164]  Piotr Zelenay,et al.  Recent advances in non-precious metal catalysis for oxygen-reduction reaction in polymer electrolyte fuel cells , 2011 .

[165]  J. Yeh,et al.  Evolution of structure and properties of multi-component (AlCrTaTiZr)Ox films , 2010 .

[166]  Jien-Wei Yeh,et al.  Inhibition of grain coarsening up to 1000 °C in (AlCrNbSiTiV)N superhard coatings , 2010 .

[167]  Shou-Yi Chang,et al.  10-nm-thick quinary (AlCrTaTiZr)N film as effective diffusion barrier for Cu interconnects at 900 °C , 2009 .

[168]  Axel van de Walle,et al.  Multicomponent multisublattice alloys, nonconfigurational entropy and other additions to the Alloy Theoretic Automated Toolkit , 2009, 0906.1608.

[169]  J. Yeh,et al.  Effects of substrate bias on structure and mechanical properties of (AlCrNbSiTiV)N coatings , 2009 .

[170]  Frédéric Jaouen,et al.  Iron-Based Catalysts with Improved Oxygen Reduction Activity in Polymer Electrolyte Fuel Cells , 2009, Science.

[171]  J. Yeh,et al.  Effects of nitrogen content on structure and mechanical properties of multi-element (AlCrNbSiTiV)N coating , 2009 .

[172]  F. Du,et al.  Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction , 2009, Science.

[173]  J. Duh,et al.  Corrosion behavior of (Ti–Al–Cr–Si–V)xNy coatings on mild steels derived from RF magnetron sputtering , 2008 .

[174]  J. Yeh,et al.  Mechanical and tribological properties of multi-element (AlCrTaTiZr)N coatings , 2008 .

[175]  Chun-Huei Tsau,et al.  Influence of substrate bias, deposition temperature and post-deposition annealing on the structure and properties of multi-principal-component (AlCrMoSiTi)N coatings , 2008 .

[176]  Jien-Wei Yeh,et al.  Thermally stable amorphous (AlMoNbSiTaTiVZr)50N50 nitride film as diffusion barrier in copper metallization , 2008 .

[177]  M. Wong,et al.  Structure and properties of reactively-sputtered AlxCoCrCuFeNi oxide films , 2007 .

[178]  Yuan-Sheng Huang,et al.  Microstructure, hardness, resistivity and thermal stability of sputtered oxide films of AlCoCrCu0.5NiFe high-entropy alloy , 2007 .

[179]  J. Yeh,et al.  Multi-component nitride coatings derived from Ti–Al–Cr–Si–V target in RF magnetron sputter , 2007 .

[180]  Shou-Yi Chang,et al.  Preparation and characterization of AlCrTaTiZr multi-element nitride coatings , 2006 .

[181]  J. Yeh Recent progress in high-entropy alloys , 2006 .

[182]  Robert W. Balluffi,et al.  Kinetics of Materials: Balluffi/Kinetics , 2005 .

[183]  Jien-Wei Yeh,et al.  Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering , 2004 .

[184]  B. Cantor,et al.  Microstructural development in equiatomic multicomponent alloys , 2004 .

[185]  T. Shun,et al.  Nanostructured High‐Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes , 2004 .

[186]  L. A. Knauss,et al.  Identification of novel compositions of ferromagnetic shape-memory alloys using composition spreads , 2003, Nature materials.

[187]  A. van de Walle,et al.  Institute of Physics Publishing Modelling and Simulation in Materials Science and Engineering Self-driven Lattice-model Monte Carlo Simulations of Alloy Thermodynamic Properties and Phase Diagrams , 2002 .

[188]  R. Wallace Is this a practical approach? , 2001, Journal of the American College of Surgeons.

[189]  A. Matthews,et al.  On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimised tribological behaviour , 2000 .

[190]  N. Saunders,et al.  CALPHAD : calculation of phase diagrams : a comprehensive guide , 1998 .

[191]  Ferreira,et al.  Special quasirandom structures. , 1990, Physical review letters.

[192]  Larry Kaufman,et al.  Computer calculation of phase diagrams with special reference to refractory metals , 1970 .

[193]  C. Aring,et al.  A CRITICAL REVIEW , 1939, Journal of neurology and psychiatry.