Light trapping in pyramidally textured crystalline silicon solar cells using back‐side diffractive gratings

Back-side diffractive gratings enhance a solar cell's efficiency by trapping light inside the cell and increasing the probability of absorption. We introduce a three-dimensional, polarization-sensitive optical model combining ray tracing and rigorous coupled-wave analysis to investigate silicon solar cells with pyramidal front-side texturing and back-side gratings. Parameter optimization is performed to increase the short-circuit current density for a linear binary grating with grating period p and height h. For the investigated 180-µm-thick pyramidally textured silicon solar cells, the simulation yields a maximum enhancement of the short-circuit current density by ΔJSC = 1.79 mA/cm2 corresponding to an absolute efficiency increase of Δη = 0.90%. Furthermore, we report on fabrication and reflectance measurements of solar cells with gratings and key challenges in achieving efficiency gains using back-side diffractive gratings. Copyright © 2012 John Wiley & Sons, Ltd.

[1]  Potential of diffraction gratings for implementation as a metal back reflector in thin-film silicon solar cells , 2008 .

[2]  Wmm Erwin Kessels,et al.  Surface passivation of high‐efficiency silicon solar cells by atomic‐layer‐deposited Al2O3 , 2008 .

[3]  P. Lalanne,et al.  Highly improved convergence of the coupled-wave method for TM polarization and conical mountings , 1996, Diffractive Optics and Micro-Optics.

[4]  Ralf Preu,et al.  Laser‐fired rear contacts for crystalline silicon solar cells , 2002 .

[5]  M. Green,et al.  Light trapping properties of pyramidally textured surfaces , 1987 .

[6]  Aasmund Sudbø,et al.  Comparison of periodic light-trapping structures in thin crystalline silicon solar cells , 2011 .

[7]  Peter Bermel,et al.  Demonstration of enhanced absorption in thin film Si solar cells with textured photonic crystal back reflector , 2008 .

[8]  Markus Wellenzohn,et al.  Light trapping by backside diffraction gratings in silicon solar cells revisited. , 2012, Optics express.

[9]  Armin G. Aberle,et al.  Surface passivation of crystalline silicon solar cells: a review , 2000 .

[10]  Aasmund Sudbø,et al.  2D back-side diffraction grating for improved light trapping in thin silicon solar cells. , 2010, Optics express.

[11]  Craig M. Herzinger,et al.  Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation , 1998 .

[12]  Andrew Blakers,et al.  RIE‐induced carrier lifetime degradation , 2010 .

[13]  Benedikt Bläsi,et al.  Electro--optical simulation of diffraction in solar cells. , 2010, Optics express.

[14]  Ping Sheng,et al.  Wavelength-selective absorption enhancement in thin-film solar cells , 1983 .

[15]  Philippe Lalanne,et al.  Computation of the near-field pattern with the coupled-wave method for transverse magnetic polarization , 1998 .

[16]  T. Fromherz,et al.  Light Trapping in Monocrystalline Si Solar Cells Using Back–Side Diffraction Gratings , 2011 .

[17]  T. Gaylord,et al.  Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings , 1995 .

[18]  R. Lüdemann,et al.  Low damage reactive ion etching for photovoltaic applications , 1999 .

[19]  Peter Bermel,et al.  Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals. , 2007, Optics express.

[20]  Benedikt Bläsi,et al.  Diffractive gratings for crystalline silicon solar cells—optimum parameters and loss mechanisms , 2012 .

[21]  Jose Rodriguez Random pyramidal texture modelling , 1997 .