Measurement of the optical absorption spectra of epitaxial graphene from terahertz to visible

We present experimental results on the optical absorption spectra of epitaxial graphene from the visible to the terahertz frequency range. In the terahertz range, the absorption is dominated by intraband processes with a frequency dependence similar to the Drude model. In the near-IR range, the absorption is due to interband processes and the measured optical conductivity is close to the theoretical value of e2/4ℏ. We extract values for the carrier densities, the number of carbon atom layers, and the intraband scattering times from the measurements.

[1]  F. Guinea,et al.  The electronic properties of graphene , 2007, Reviews of Modern Physics.

[2]  N. Peres,et al.  Fine Structure Constant Defines Visual Transparency of Graphene , 2008, Science.

[3]  P. Kim,et al.  Dirac charge dynamics in graphene by infrared spectroscopy , 2008, 0807.3780.

[4]  C. Berger,et al.  Why multilayer graphene on 4H-SiC(0001[over ]) behaves like a single sheet of graphene. , 2008, Physical review letters.

[5]  Michael G. Spencer,et al.  Measurement of Ultrafast Carrier Dynamics in Epitaxial Graphene , 2007, 0712.0119.

[6]  F. Rana,et al.  Graphene Terahertz Plasmon Oscillators , 2007, IEEE Transactions on Nanotechnology.

[7]  M. Potemski,et al.  Few-layer graphene on SiC, pyrolitic graphite, and graphene: A Raman scattering study , 2007, 0709.2538.

[8]  S. Latil,et al.  Massless fermions in multilayer graphitic systems with misoriented layers: Ab initio calculations an , 2007, 0709.2315.

[9]  A. V. Fedorov,et al.  Substrate-induced bandgap opening in epitaxial graphene. , 2007, Nature materials.

[10]  L. DiCarlo,et al.  Quantum Hall Effect in a Gate-Controlled p-n Junction of Graphene , 2007, Science.

[11]  W. K. Chan,et al.  Field effect in epitaxial graphene on a silicon carbide substrate , 2007 .

[12]  N. Peres,et al.  Graphene bilayer with a twist: electronic structure. , 2007, Physical review letters.

[13]  Dmitri E. Nikonov,et al.  Performance Projections for Ballistic Graphene Nanoribbon Field-Effect Transistors , 2007, IEEE Transactions on Electron Devices.

[14]  K. Novoselov,et al.  Detection of individual gas molecules adsorbed on graphene. , 2006, Nature materials.

[15]  V. Gusynin,et al.  Magneto-optical conductivity in graphene , 2007, 0705.3783.

[16]  Andre K. Geim,et al.  Raman spectrum of graphene and graphene layers. , 2006, Physical review letters.

[17]  C. Berger,et al.  Electronic Confinement and Coherence in Patterned Epitaxial Graphene , 2006, Science.

[18]  V. Gusynin,et al.  Unusual microwave response of dirac quasiparticles in graphene. , 2006, Physical review letters.

[19]  F. Guinea,et al.  Electronic properties of disordered two-dimensional carbon , 2005, cond-mat/0512091.

[20]  P. Kim,et al.  Experimental observation of the quantum Hall effect and Berry's phase in graphene , 2005, Nature.

[21]  A. Geim,et al.  Two-dimensional gas of massless Dirac fermions in graphene , 2005, Nature.

[22]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[23]  C. Berger,et al.  Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. , 2004, cond-mat/0410240.

[24]  J. Gilman,et al.  Nanotechnology , 2001 .

[25]  P. Cumpson The Thickogram: a method for easy film thickness measurement in XPS , 2000 .

[26]  J. Robertson,et al.  Interpretation of Raman spectra of disordered and amorphous carbon , 2000 .

[27]  T. Ebbesen Physical Properties of Carbon Nanotubes , 1997 .