Electrochemical devices for energy: fuel cells and electrolytic cells

Abstract: This chapter is dedicated to some significant applications of membranes in the field of energy, focusing on fuel cells and electrolytic cells. Both electrochemical devices are part of an international effort at both fundamental and demonstration levels and, in some specific cases, market entry has already begun. Membranes can be considered as separators between cathodes and anodes. As fuel cells are extremely varied, with working temperatures between 80°C and 900°C, and electrolytes from liquid to solid passing by molten salts, they are of particular interest for the research and development of new membranes. The situation is quite similar to the case of electrolysers dedicated to water electrolysis. The principal features of these devices will be outlined, with emphasis on the properties of the state-of-the-art membranes and on the present innovations in this area.

[1]  M. T. Casais,et al.  Modified nickel oxides as cathode materials for MCFC , 2000 .

[2]  P. Trogadas,et al.  Degradation mitigation in PEM fuel cells using metal nanoparticle additives , 2011 .

[3]  Robert B. Moore,et al.  State of understanding of nafion. , 2004, Chemical reviews.

[4]  Rizwan Raza,et al.  Improved ceria-carbonate composite electrolytes , 2010 .

[5]  S. Obara Study of a water electrolysis system using a compact solar cell module with a plant shoot configuration , 2010 .

[6]  S. Stefanovich,et al.  Synthesis and Properties of La2(Mo1 – xMx )2O9 (M = Nb, Ta) Ionic Conductors , 2002 .

[7]  Deborah J. Jones,et al.  Recent advances in the functionalisation of polybenzimidazole and polyetherketone for fuel cell applications , 2001 .

[8]  M. Cassir,et al.  Identification and electrochemical characterization of in situ produced and added reduced oxygen species in molten Li2CO3 + K2CO3 , 1997 .

[9]  Q. Yan,et al.  Effect of co-dopant addition on the properties of yttrium and neodymium doped barium cerate electrolyte , 2006 .

[10]  Karl V. Kordesch,et al.  Fuel cells and their applications , 1996 .

[11]  E. M. Patton,et al.  Carbon–air fuel cell without a reforming process , 2004 .

[12]  H. Takenaka,et al.  Properties of Nafion membranes under PEM water electrolysis conditions , 2011 .

[13]  Anouk Galtayries,et al.  Electrochemical deposition of Co3O4 thin layers in order to protect the nickel-based molten carbonate fuel cell cathode , 2003 .

[14]  Ralph E. White,et al.  Electrochemical Characterization of Cobalt-Encapsulated Nickel as Cathodes for MCFC , 2002 .

[15]  Robert F. Savinell,et al.  High temperature proton exchange membranes based on polybenzimidazoles for fuel cells , 2009 .

[16]  D. Curtin,et al.  Advanced materials for improved PEMFC performance and life , 2004 .

[17]  B. Zhu,et al.  Synthesis and characterization of composite electrolytes based on samaria-doped ceria and Na/Li carbonates , 2010 .

[18]  J. Pereira‐Ramos,et al.  Raman evidence of the formation of LT-LiCoO2 thin layers on NiO in molten carbonate at 650°C , 2004 .

[19]  J. Van herle,et al.  Neodymium-deficient nickelate oxide Nd1.95NiO4+δ as cathode material for anode-supported intermediate temperature solid oxide fuel cells , 2008 .

[20]  V. Kharton,et al.  Ionic and electronic transport in stabilized β-La2Mo2O9 electrolytes , 2004 .

[21]  C. Lamy,et al.  Les piles à combustible : application au véhicule électrique , 1994 .

[22]  Ji Young Kim,et al.  The formation of LiCoO2 on a NiO cathode for a molten carbonate fuel cell using electroplating , 2001 .

[23]  F. Pérez,et al.  Hot corrosion study of coated separator plates of molten carbonate fuel cells by slurry aluminides , 2002 .

[24]  K. Hemmes,et al.  The Mechanism of Hydrogen Oxidation at Gold and Nickel Flag Electrodes in Molten Li/K Carbonate , 1995 .

[25]  R. D. Levie,et al.  The electrolysis of water , 1999 .

[26]  Kimihiko Sugiura,et al.  The carbon dioxide concentrator by using MCFC , 2003 .

[27]  F. C. Wilson,et al.  The morphology in nafion† perfluorinated membrane products, as determined by wide- and small-angle x-ray studies , 1981 .

[28]  T. Fuller,et al.  Design rules for the improvement of the performance of hydrocarbon‐based membranes for proton exchange membrane fuel cells (PEMFC) , 2010 .

[29]  H. Wendt,et al.  Molten carbonate fuel cell research: Part I. Comparing cathodic oxygen reduction in lithium/potassium and lithium/sodium carbonate melts , 1999 .

[30]  Makoto Adachi,et al.  Properties of Nafion® NR-211 membranes for PEMFCs , 2010 .

[31]  P. Trogadas,et al.  Platinum supported on CeO2 effectively scavenges free radicals within the electrolyte of an operating fuel cell. , 2011, Chemical communications.

[32]  Sukhvinder P.S. Badwal,et al.  Stand-alone PEM water electrolysis system for fail safe operation with a renewable energy source , 2010 .

[33]  Y. Kubota FLUORESCENCE LIFETIMES AND QUANTUM YIELDS OF ACRIDINE DYES BOUND TO DNA , 1973 .

[34]  Tingyue Gu,et al.  A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy. , 2007, Biotechnology advances.

[35]  M. Cassir,et al.  Gadolinia-doped ceria mixed with alkali carbonates for solid oxide fuel cell applications: I. A ther , 2011 .

[36]  V. Cherepanov,et al.  Performance of perovskite-related oxide cathodes in contact with lanthanum silicate electrolyte , 2009 .

[37]  Deborah J. Jones,et al.  The effect of dissolution, migration and precipitation of platinum in Nafion ® -based membrane electrode assemblies during fuel cell operation at high potential , 2008 .

[38]  T. Schober Applications of oxidic high-temperature proton conductors , 2003 .

[39]  Koichi Matsuzawa,et al.  The effect of La oxide additive on the solubility of NiO in molten carbonates , 2005 .

[40]  John T. S. Irvine,et al.  The development of a carbon-air semi fuel cell , 2006 .

[41]  M. Cassir,et al.  Chemical and electrochemical behaviour of Ni–Ti in the cathodic conditions used in molten carbonate fuel cells , 2001 .

[42]  I. Uchida,et al.  Oxide electrodes in molten carbonates Part 1. Electrochemical behaviour of nickel in molten Li + K and Na + K carbonate eutectics , 1995 .

[43]  J. O’Brien,et al.  High-temperature electrolysis for large-scale hydrogen production from nuclear energy – Experimental investigations , 2010 .

[44]  G. Broers High temperature galvanic fuel cells , 1958 .

[45]  Mao Zongqiang,et al.  Electrochemical properties of intermediate-temperature SOFCs based on proton conducting Sm-doped BaCeO3 electrolyte thin film , 2006 .

[46]  F. Goutenoire,et al.  Reducibility of fast oxide-ion conductors La2−xRxMo2−yWyO9(R = Nd, Gd) , 2003 .

[47]  S. Paddison,et al.  Effect of Molecular Weight on Hydrated Morphologies of the Short-Side-Chain Perfluorosulfonic Acid Membrane , 2009 .

[48]  Lei Zhang,et al.  Durability study of an intermediate temperature fuel cell based on an oxide–carbonate composite electrolyte , 2010 .

[49]  V. Kharton,et al.  Ionic and electronic conductivities, stability and thermal expansion of La10 − x(Si,Al)6O26 ± δ solid electrolytes , 2006 .

[50]  Young-Suk Kim,et al.  Modification of Ni-based cathode material for molten carbonate fuel cells using Co3O4 , 2011 .

[51]  Masahiro Yanagida,et al.  Optimization of the electrolyte composition in a (Li0.52Na0.48)2−2xAExCO3 (AE = Ca and Ba) molten carbonate fuel cell , 2004 .

[52]  Y. Sadaoka,et al.  Ionic conductivity of lanthanoid silicates, Ln10(SiO4)6O3(Ln = La, Nd, Sm, Gd, Dy, Y, Ho, Er and Yb) , 1995 .

[53]  D. Sinclair,et al.  A novel enhancement of ionic conductivity in the cation-deficient apatite La9.33(SiO4)6O2 , 2001 .

[54]  S. Trasatti,et al.  Water electrolysis : who first? , 1999 .

[55]  Ming-hua Zhou,et al.  An overview of electrode materials in microbial fuel cells , 2011 .

[56]  J. Selman,et al.  Electrode kinetics of oxygen reduction on gold in molten carbonate , 1992 .

[57]  Dokyol Lee,et al.  Corrosion resistance of 316L stainless steel with surface layer of Ni2Al3 or NiAl in molten carbonates , 2003 .

[58]  L. Malavasi,et al.  Effect of alkaline-doping on the properties of La2Mo2O9 fast oxygen ion conductor , 2004 .

[59]  Y. Wang,et al.  Electrical conductivity and 6,7Li NMR studies of Li1 + yCoO2 , 1997 .

[60]  Antonino S. Aricò,et al.  Nafion–TiO2 composite DMFC membranes: physico-chemical properties of the filler versus electrochemical performance , 2005 .

[61]  Yvon Laligant,et al.  Designing fast oxide-ion conductors based on La2Mo2O 9 , 2000, Nature.

[62]  Deborah J. Jones,et al.  Advances in the Development of Inorganic-Organic Membranes for Fuel Cell Applications , 2008 .

[63]  Srikanth Gopalan,et al.  Thermodynamic Stabilities of SrCeO3 and BaCeO3 Using a Molten Salt Method and Galvanic Cells , 1993 .

[64]  Deborah J. Jones,et al.  Hybrid Polyaryletherketone Membranes for Fuel Cell Applications , 2002 .

[65]  V. Kharton,et al.  Ionic and electronic conductivity of La9.83−xPrxSi4.5Fe1.5O26±δ apatites , 2004 .

[66]  J. Maier,et al.  About the Choice of the Protogenic Group in PEM Separator Materials for Intermediate Temperature, Low Humidity Operation: A Critical Comparison of Sulfonic Acid, Phosphonic Acid and Imidazole Functionalized Model Compounds , 2005 .

[67]  Stanley Bruckenstein,et al.  Electrochemical Kinetics: Theoretical and Experimental Aspects , 1967 .

[68]  M. Hickner,et al.  Alternative polymer systems for proton exchange membranes (PEMs). , 2004, Chemical reviews.

[69]  J. Canales‐Vázquez,et al.  Electrical conductivity and redox stability of La2Mo2−xWxO9 materials , 2005 .

[70]  L. León-Reina,et al.  Low temperature crystal structures of apatite oxygen-conductors containing interstitial oxygen. , 2007, Dalton transactions.

[71]  Mohammad Farooque,et al.  Status of Carbonate Fuel Cell Materials , 1995, ECS Transactions.

[72]  V. Kharton,et al.  Electrochemical behavior of mixed-conducting oxide cathodes in contact with apatite-type La10Si5AlO26.5 electrolyte , 2007 .

[73]  P. Slater,et al.  A powder neutron diffraction study of the oxide-ion-conducting apatite-type phases, La9.33Si6O26 and La8Sr2Si6O26 , 2001 .

[74]  J. Irvine,et al.  A Stable, Easily Sintered Proton‐ Conducting Oxide Electrolyte for Moderate‐Temperature Fuel Cells and Electrolyzers , 2006 .

[75]  K. Müllen,et al.  Functionalized poly(benzimidazole)s as membrane materials for fuel cells , 2007 .

[76]  P. Jannasch,et al.  On the Prospects for Phosphonated Polymers as Proton-Exchange Fuel Cell Membranes , 2007 .

[77]  C. Paoletti,et al.  Performance analysis of new cathode materials for molten carbonate fuel cells , 2009 .

[78]  Carina Lagergren,et al.  Solubility and electrochemical studies of LiFeO2–LiCoO2–NiO materials for the MCFC cathode application , 2006 .

[79]  S. Redfern,et al.  Thermodynamic nature of and spontaneous strain below the cubic-monoclinic phase transition in La2Mo2O9 , 2004 .

[80]  E. Suard,et al.  Structural and transport characteristics ofthe LAMOX family of fast oxide-ion conductors, based on lanthanum molybdenumoxide La2Mo2O9 , 2001 .

[81]  H. Flood,et al.  The acidic and basic properties of oxides. , 1947, Acta chemica Scandinavica.

[82]  F. Goutenoire,et al.  Crystal Structure of La2Mo2O9, a New Fast Oxide−Ion Conductor , 2000 .

[83]  Qinghua Liu,et al.  Intermediate temperature fuel cell with a doped ceria-carbonate composite electrolyte , 2010 .

[84]  Panagiotis Tsiakaras,et al.  Thermodynamic analysis of a methane fed SOFC system based on a protonic conductor , 2002 .

[85]  J. Irvine,et al.  Electrochemical oxidation of solid carbon in hybrid DCFC with solid oxide and molten carbonate binary electrolyte , 2008 .

[86]  Ø. Ulleberg,et al.  The wind/hydrogen demonstration system at Utsira in Norway: Evaluation of system performance using operational data and updated hydrogen energy system modeling tools , 2010 .

[87]  Ralph E. White,et al.  Comprehensive Treatise of Electrochemistry , 1981 .

[88]  Aymeric Rousseau,et al.  Fuel economy of hybrid fuel-cell vehicles , 2005 .

[89]  F. Alloin,et al.  Anionic membrane based on polyepichlorhydrin matrix for alkaline fuel cell: Synthesis, physical and electrochemical properties , 2007 .

[90]  V. Kharton,et al.  Oxygen ionic and electronic transport in apatite-type La10−x(Si,Al)6O26±δ , 2005 .

[91]  F. Fauth,et al.  Thermal, structural and transport properties of the fast oxide-ion conductors La2-xRxMo2O9 (R=Nd, Gd, Y) , 2003 .

[92]  Bruce E. Logan,et al.  Scale-up of membrane-free single-chamber microbial fuel cells , 2008 .

[93]  G. Alberti,et al.  Composite Membranes for Medium-Temperature PEM Fuel Cells , 2003 .

[94]  D. Leung,et al.  Technological development of hydrogen production by solid oxide electrolyzer cell (SOEC) , 2008 .

[95]  Shuqin Song,et al.  Charge transfer properties of BaCe0.88Nd0.12O3−δ co-ionic electrolyte , 2006 .

[96]  James H. White,et al.  Rational selection of advanced solid electrolytes for intermediate temperature fuel cells , 1992 .

[97]  T. Ishihara,et al.  Oxide ion conductivity in Sr-doped La10Ge6O27 apatite oxide , 2000 .

[98]  J. Selman,et al.  Gas Electrode Reactions in Molten Carbonate Media Part V . Electrochemical Analysis of the Oxygen Reduction Mechanism at a Fully Immersed Gold Electrode , 1990 .

[99]  Bin Zhu,et al.  Theoretical approach on ceria-based two-phase electrolytes for low temperature (300–600 °C) solid oxide fuel cells , 2008 .

[100]  B. Zhu,et al.  Samarium doped ceria–(Li/Na)2CO3 composite electrolyte and its electrochemical properties in low temperature solid oxide fuel cell , 2010 .

[101]  Takashi Itoh,et al.  Ni–Al alloy as alternative cathode for molten carbonate fuel cells , 2001 .

[102]  Jean-Marc Bassat,et al.  Oxygen electrode reaction on Nd2NiO4+δ cathode materials: impedance spectroscopy study , 2003 .

[103]  L. León-Reina,et al.  Interstitial oxygen conduction in lanthanum oxy-apatite electrolytes , 2004 .

[104]  Q. Fang,et al.  Dielectric relaxation studies of Bi-doping effects on the oxygen-ion diffusion in La2−xBixMo2O9 oxide-ion conductors , 2002 .

[105]  Carina Lagergren,et al.  A study on LiCoO2-rich cathode materials for the MCFC based on the LiCoO2–LiFeO2–NiO ternary system , 2004 .

[106]  Reduction of oxygen in lithium-potassium carbonate melt , 1980 .

[107]  V. Arcella,et al.  High Performance Perfluoropolymer Films and Membranes , 2003, Annals of the New York Academy of Sciences.

[108]  Koichi Matsuzawa,et al.  Improvement of MCFC cathode stability by additives , 2002 .

[109]  F. Aldinger,et al.  Synthesis and characterization of (La1-xMx)2Mo2O9-δ ; M=Ca2+, Sr2+ or Ba2+ , 2004 .

[110]  John A. Kilner,et al.  Effect of humidification at anode and cathode in proton-conducting SOFCs , 2003 .

[111]  G. Robertson,et al.  Sulphonated Biphenylated Poly(aryl ether ketone)s for Fuel Cell Applications , 2009 .

[112]  K. Müllen,et al.  Proton mobilities in phosphonic acid-based proton exchange membranes probed by 1H and 2H solid-state NMR spectroscopy. , 2009, The journal of physical chemistry. B.

[113]  M. Guiver,et al.  Sulfonated hydrocarbon membranes for medium-temperature and low-humidity proton exchange membrane fuel cells (PEMFCs) , 2011 .

[114]  F. T. Bacon Fuel cells, past, present and future☆ , 1969 .

[115]  V. Lair,et al.  Characterization in MCFC conditions of high-temperature, potentiostatically deposited Co-based thin films on NiO cathode , 2008 .

[116]  P. Jannasch,et al.  Poly(arylene ether sulfone)s with phosphonic acid and bis(phosphonic acid) on short alkyl side chains for proton-exchange membranes , 2008 .

[117]  Cheng‐Chien Wang,et al.  Influences of a bipolar membrane and an ultrasonic field on alkaline water electrolysis , 2012 .

[118]  Qingfeng Li,et al.  Cross-Linked Polybenzimidazole Membranes for Fuel Cells , 2007 .

[119]  Satoshi Ohara,et al.  Properties of NiO cathode coated with lithiated Co and Ni solid solution oxide for MCFCs , 2000 .

[120]  A. Kornyshev,et al.  Proton-Conducting Polymer Electrolyte Membranes: Water and Structure in Charge , 2008 .

[121]  Deborah J. Jones,et al.  Novel sulfonated poly(arylene ether benzimidazole) Cardo proton conducting membranes for PEMFC , 2010 .

[122]  Hiroshi Morita,et al.  Performance analysis of molten carbonate fuel cell using a Li/Na electrolyte , 2002 .

[123]  Richard Green,et al.  Turning the wind into hydrogen: The long-run impact on electricity prices and generating capacity , 2011 .

[124]  P. Geffroy,et al.  Evaluation of the La0.75Sr0.25Mn0.8Co0.2O3−δ system as cathode material for ITSOFCs with La9Sr1Si6O26.5 apatite as electrolyte , 2009 .

[125]  Peter R. Slater,et al.  Defect chemistry and oxygen ion migration in the apatite-type materials La9.33Si6O26 and La8Sr2Si6O26 , 2003 .

[126]  M. Cassir,et al.  Stability and Characterization of Oxygen Species in Alkali Molten Carbonate: A Thermodynamic and Electrochemical Approach , 1993 .

[127]  Loreto Daza,et al.  Porous nickel MCFC cathode coated by potentiostatically deposited cobalt oxide: II. Structural and morphological behavior in molten carbonate , 2006 .

[128]  S. Scaccia,et al.  Investigation on NiO solubility in binary and ternary molten alkali metal carbonates containing additives , 2005 .

[129]  Timothy J. Peckham,et al.  Structure‐Morphology‐Property Relationships of Non‐Perfluorinated Proton‐Conducting Membranes , 2010, Advanced materials.

[130]  W. R. Grove On a Gaseous Voltaic Battery , 1843 .

[131]  H. Yoshioka,et al.  Ionic conductivity and fuel cell properties of apatite-type lanthanum silicates doped with Mg and containing excess oxide ions , 2008 .

[132]  S. Bruque,et al.  Synthesis, Structures, and Thermal Expansion of the La2W2−xMoxO9 Series , 2002 .

[133]  Juan Carlos Ruiz-Morales,et al.  Evaluation of apatite silicates as solid oxide fuel cell electrolytes , 2010 .

[134]  Tatsumi Ishihara,et al.  Doped LaGaO3 Perovskite Type Oxide as a New Oxide Ionic Conductor , 1994 .

[135]  Deborah J. Jones,et al.  Effect of side‐chain length on the electrospinning of perfluorosulfonic acid ionomers , 2013 .

[136]  Kevin D. Pointon,et al.  The direct borohydride fuel cell for UUV propulsion power , 2006 .

[137]  L. León-Reina,et al.  Interstitial oxide positions in oxygen-excess oxy-apatites , 2006 .

[138]  M. Islam,et al.  Atomic-scale mechanistic features of oxide ion conduction in apatite-type germanates. , 2008, Chemical communications.

[139]  Nethika S. Suraweera,et al.  On the Relationship between Polymer Electrolyte Structure and Hydrated Morphology of Perfluorosulfonic Acid Membranes , 2010 .

[140]  Using aluminum and Li2CO3 particles to reinforce the α-LiAlO2 matrix for molten carbonate fuel cells , 2009 .

[141]  T. Yao,et al.  Electrical conductivity of Ba1-xLaxSc1-yZryO3-δ with defective perovskite structure , 2005 .

[142]  M. Cassir,et al.  Direct Low-Temperature Deposition of Crystallized CoOOH Films by Potentiostatic Electrolysis , 2005 .

[144]  Bruce E Logan,et al.  Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell. , 2004, Environmental science & technology.

[145]  M. Cassir,et al.  Technological applications of molten salts: the case of the molten carbonate fuel cell , 1999 .

[146]  H. Wendt,et al.  Cermet diaphragms and integrated electrode-diaphragm units for advanced alkaline water electrolysis , 1985 .

[147]  Hiroshi Morita,et al.  Improvement of electricity generating performance and life expectancy of MCFC stack by applying Li/Na carbonate electrolyte. Test results and analysis of 0.44 m 2 /10 kW- and 1.03 m 2 /10 kW-class stack , 2004 .

[148]  Gas Electrode Reactions in Molten Carbonate Media IV . Electrode Kinetics and Mechanism of Hydrogen Oxidation in Eutectic , 1990 .

[149]  Y. Takeda,et al.  Electrical conductivity of the ZrO2–Ln2O3 (Ln=lanthanides) system , 1999 .

[150]  P. Slater,et al.  Development of apatite-type oxide ion conductors. , 2004, Chemical record.

[151]  Brian C. Benicewicz,et al.  High-Temperature Polybenzimidazole Fuel Cell Membranes via a Sol-Gel Process , 2005 .

[152]  B. Pivovar,et al.  Sulfonated poly(arylene ether sulfone) copolymer proton exchange membranes: composition and morphology effects on the methanol permeability , 2004 .

[153]  L. Gubler,et al.  Celtec-V A Polybenzimidazole-Based Membrane for the Direct Methanol Fuel Cell , 2007 .

[154]  G. Meng,et al.  High performance protonic ceramic membrane fuel cells (PCMFCs) with Sm0.5Sr0.5CoO3―δ perovskite cathode , 2010 .

[155]  Deborah J. Jones,et al.  Non-Fluorinated Polymer Materials for Proton Exchange Membrane Fuel Cells , 2003 .

[156]  B. Tremillon,et al.  Reactions in solution : an applied analytical approach , 1997 .

[157]  Meilin Liu,et al.  A Novel Composite Cathode for Low‐Temperature SOFCs Based on Oxide Proton Conductors , 2008 .

[158]  Nelson A. Kelly,et al.  Predicting efficiency of solar powered hydrogen generation using photovoltaic-electrolysis devices , 2010 .

[159]  J. O’Brien,et al.  High-temperature electrolysis for large-scale hydrogen and syngas production from nuclear energy: summary of system simulation and economic analyses , 2010 .

[160]  Koichi Matsuzawa,et al.  Effect of rare earth oxides for improvement of MCFC , 2006 .

[161]  Deborah J. Jones,et al.  High Temperature Operation of a Solid Polymer Electrolyte Fuel Cell Stack Based on a New Ionomer Membrane , 2009, ECS Transactions.

[162]  G. Corbel,et al.  On the thermodynamic stability of La2Mo2O9−δ oxide-ion conductor , 2010 .

[163]  P. Moriarty,et al.  Estimating global hydrogen production from wind , 2009 .

[164]  H. Vandenborre,et al.  Alkaline inorganic-membrane-electrolyte (IME) water electrolysis , 1980 .

[165]  Aymeric Rousseau,et al.  Fuel economy of hydrogen fuel cell vehicles , 2004 .

[166]  M. Islam,et al.  An apatite for fast oxide ion conduction , 2003 .

[167]  Jeanette E. Owejan,et al.  Mitigation of Perfluorosulfonic Acid Membrane Chemical Degradation Using Cerium and Manganese Ions , 2008 .

[168]  Sossina M. Haile,et al.  Enhanced Sintering of Yttrium‐Doped Barium Zirconate by Addition of ZnO , 2005 .

[169]  Kwi Seong Jeong,et al.  Fuel economy and life-cycle cost analysis of a fuel cell hybrid vehicle , 2002 .

[170]  Juncai Sun,et al.  Electrochemical performances of NANOCOFC in MCFC environments , 2010 .

[171]  Klaus S. Lackner,et al.  Transport model for a high temperature, mixed conducting CO2 separation membrane , 2007 .

[172]  A. Brisse,et al.  Electrochemical Characterizations of Ni/Doped Lanthanum Silicates Cermets Deposited by Spin Coating , 2006 .

[173]  Mineo Sato,et al.  Oxide ionic conductivity of apatite type Nd9·33(SiO4)6O2 single crystal , 1999 .

[174]  B. Zhu,et al.  Studies on Dual Phase Ceria-based Composites in Electrochemistry , 2006, International Journal of Electrochemical Science.