This paper addresses the problem of finding optimal operational policies for an acetylene reactor for day to day operation. A lumped parameter model based on four main reactions is developed and used to examine the effects of the reactor manipulated variables on key reaction parameters. An optimal and a sub-optimal operational policy which minimize the ethylene loss over time are formulated and the solution techniques are presented. The results indicate that the reactor model is in good agreement with industrial plant data. The performance of the optimal control policy is very similar to the performance of the sub-optimal control policy. However, the sub-optimal formulation, while retaining the dominant features of the optimal response, reduces the computational requirements. Finally, some issues concerning the real-time implementation of an advanced acetylene reactor control scheme are presented. These include the estimation of the optimum regeneration cycle, a recursive model update algorithm, the process optimizer and their overall coordination. A preliminary analysis of the benefits associated with the advanced control scheme suggests a considerable reduction in the yearly ethylene loss.
On se propose dans cet article de trouver des strategies de fonctionnement optimales pour un reacteur d'acetylene utilise quotidiennement. On a mis au point et applique un modele a parametre global base sur quatre reactions principales pour examiner les effets des variables du reacteur manipulees sur les principaux parametres de reaction. Une strategie de fonctionnement optimale et une strategie sous-optimale qui minimisent la perte d'ethylene dans le temps sont formulees et les techniques de solution presentees. Les resultats indiquent que le modele de reacteur montre un bon accord avec les donnees industrielles. La performance de la strategie de controle optimale est tres semblable a celle de la strategie de controle sous-optimale. Cependant, la formulation sous-optimale, alors qu'elle conserve les caracteristiques de la reponse optimale, reduit les besoins de calcul par ordinateur. Enfin, on presente certains problemes concernant l'application en temps reel d'un schema de controle avance pour un reacteur d'acetylene. Cela comprend l'estimation d'un cycle de regeneration optimum, un algorithme mis a jour du modele recurrent, l'«optimisateur» de procedes et leur coordination generale. Une analyse preliminaire des avantages associes aux schema de controle avance suggere une reduction considerable de la perte annuelle d'ethylene.
[1]
L. Guczi,et al.
The effect of catalyst treatment on the selective hydrogenation of acetylene over palladium/alumina
,
1984
.
[2]
G. F. Hall.
Energy and product savings through advanced control
,
1985
.
[3]
L. Dalloro,et al.
Performance and aging of catalysts for the selective hydrogenation of acetylene: a micropilot-plant study
,
1982
.
[4]
G. Bond,et al.
The hydrogenation of acetylene: I. The reaction of acetylene with hydrogen catalyzed by alumina-supported platinum
,
1966
.
[5]
G. Webb,et al.
Hydrogenation of acetylene over supported metal catalysts. Part 1.—Adsorption of [14C]acetylene and [14C]ethylene on silica supported rhodium, iridium and palladium and alumina supported palladium
,
1978
.
[6]
M. Scurrell,et al.
Hydrogenation of acetylene in excess ethylene on an alumina supported palladium catalyst in a static system
,
1977
.
[7]
L. Guczi,et al.
Green oil poisoning of a Pd/a1203 acetylene hydrogenation catalyst
,
1984
.
[8]
G. Froment,et al.
Non-steady state behaviour of fixed bed catalytic reactors due to catalyst fouling
,
1961
.