Water vapor diffusion in Mars subsurface environments

The diffusion coefficient of water vapor in unconsolidated porous media is measured for various soil simulants at Mars-like pressures and subzero temperatures. An experimental chamber which simultaneously reproduces a low-pressure, low-temperature, and low-humidity environment is used to monitor water flux from an ice source through a porous diffusion barrier. Experiments are performed on four types of simulants: 40–70 µm glass beads, sintered glass filter disks, 1–3 µm dust (both loose and packed), and JSC Mars–1. A theoretical framework is presented that applies to environments that are not necessarily isothermal or isobaric. For most of our samples, we find diffusion coefficients in the range of 2.8 to 5.4 cm^2 s^-1 at 600 Pascal and 260 K. This range becomes 1.9–4.7 cm^2 s^-1 when extrapolated to a Mars-like temperature of 200 K. Our preferred value for JSC Mars–1 at 600 Pa and 200 K is 3.7 ± 0.5 cm^2 s^-1. The tortuosities of the glass beads is about 1.8. Packed dust displays a lower mean diffusion coefficient of 0.38 ± 0.26 cm^2 s^-1, which can be attributed to transition to the Knudsen regime where molecular collisions with the pore walls dominate. Values for the diffusion coefficient and the variation of the diffusion coefficient with pressure are well matched by existing models. The survival of shallow subsurface ice on Mars and the providence of diffusion barriers are considered in light of these measurements.

[1]  T. N. Stevenson,et al.  Fluid Mechanics , 2021, Nature.

[2]  E. T. Nelson The measurement of vapour diffusivities in coal‐gas and some common gases , 2007 .

[3]  Amitabha Ghosh,et al.  An integrated view of the chemistry and mineralogy of martian soils , 2005, Nature.

[4]  O. Aharonson,et al.  Stability and exchange of subsurface ice on Mars , 2005 .

[5]  Bernard H. Foing,et al.  Tropical to mid-latitude snow and ice accumulation, flow and glaciation on Mars , 2005, Nature.

[6]  Jan-Peter Muller,et al.  Evidence from the Mars Express High Resolution Stereo Camera for a frozen sea close to Mars' equator , 2005, Nature.

[7]  Raymond E. Arvidson,et al.  Global thermal inertia and surface properties of Mars from the MGS mapping mission , 2005 .

[8]  A. Knoll,et al.  The Opportunity Rover's Athena Science Investigation at Meridiani Planum, Mars , 2004, Science.

[9]  Rebecca Castano,et al.  Effect of Mars analogue dust deposition on the automated detection of calcite in visible/near-infrared spectra , 2004 .

[10]  Tobias Owen,et al.  Detection of methane in the martian atmosphere: evidence for life? , 2004 .

[11]  William V. Boynton,et al.  Global distribution of near-surface hydrogen on Mars , 2004 .

[12]  Thomas H. Prettyman,et al.  The presence and stability of ground ice in the southern hemisphere of Mars , 2004 .

[13]  Boming Yu,et al.  Permeabilities of unsaturated fractal porous media , 2003 .

[14]  T. Koop The Water Activity of Aqueous Solutions in Equilibrium with Ice , 2002 .

[15]  Michael D. Smith The annual cycle of water vapor on Mars as observed by the Thermal Emission Spectrometer , 2002 .

[16]  J. Mustard,et al.  Spectroscopy of Loose and Cemented Sulfate-Bearing Soils: Implications for Duricrust on Mars , 2002 .

[17]  P. A. J. Englert,et al.  Distribution of Hydrogen in the Near Surface of Mars: Evidence for Subsurface Ice Deposits , 2002, Science.

[18]  C. Calle,et al.  JSC Mars-1 Martian Regolith simulant particle charging experiments in a low pressure environment , 2001 .

[19]  Michael H. Hecht,et al.  Metastability of liquid water on Mars , 2001 .

[20]  K. Nealson,et al.  Atmospheric energy for subsurface life on Mars? , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[21]  R. Hindmarsh,et al.  Sublimation of ice through sediment in beacon valley, antarctica , 1998 .

[22]  Richard V. Morris,et al.  Martian soil simulant available for scientific, educational study , 1998 .

[23]  B. Jakosky,et al.  The Mars Water Cycle: Determining the Role of Exchange with the Regolith☆ , 1997 .

[24]  A. Zent,et al.  Measurement of H2O adsorption under Mars-like conditions: Effects of adsorbent heterogeneity , 1997 .

[25]  Richard V. Morris,et al.  JSC Mars-1 - Martian regolith simulant , 1997 .

[26]  J. Tison,et al.  Preservation of Miocene glacier ice in East Antarctica , 1995, Nature.

[27]  Philip S. Anderson,et al.  MECHANISM FOR THE BEHAVIOR OF HYDROACTIVE MATERIALS USED IN HUMIDITY SENSORS , 1995 .

[28]  Bruce M. Jakosky,et al.  The distribution and behavior of Martian ground ice during past and present epochs , 1995 .

[29]  M. Mellon,et al.  Geographic variations in the thermal and diffusive stability of ground ice on Mars , 1993 .

[30]  Raymond E. Arvidson,et al.  The Martian surface as imaged, sampled, and analyzed by the Viking landers , 1989 .

[31]  C. Sorensen,et al.  The density of supercooled water. II. Bulk samples cooled to the homogeneous nucleation limit , 1987 .

[32]  G. Clow Generation of liquid water on Mars through the melting of a dusty snowpack , 1987 .

[33]  F. Fanale,et al.  Distribution and state of H2O in the high-latitude shallow subsurface of Mars , 1986 .

[34]  D. Hillel,et al.  KNUDSEN DIFFUSION: THE EFFECT OF SMALL PORE SIZE AND LOW GAS PRESSURE ON GASEOUS TRANSPORT IN SOIL , 1986 .

[35]  P. Christensen Regional dust deposits on Mars - Physical properties, age, and history , 1986 .

[36]  B. Jakosky The seasonal cycle of water on Mars , 1985 .

[37]  F. Fanale,et al.  Global distribution and migration of subsurface ice on mars , 1985 .

[38]  B. Jakosky The role of seasonal reservoirs in the Mars water cycle. I Seasonal exchange of water with the regolith. II - Coupled models of the regolith, the polar caps, and atmospheric transport , 1983 .

[39]  E. A. Mason,et al.  Gas Transport in Porous Media: The Dusty-Gas Model , 1983 .

[40]  D. Hillel,et al.  The stability of ground ice in the equatorial region of Mars , 1983 .

[41]  J. Burns,et al.  The astronomical theory of climatic change on Mars , 1980 .

[42]  R. E. Cunningham,et al.  Diffusion in Gases and Porous Media , 1980 .

[43]  Ronald Greeley,et al.  Threshold windspeeds for sand on Mars: Wind tunnel simulations , 1980 .

[44]  K. Z. Bradford,et al.  Sample fields of the Viking Landers, physical properties, and aeolian processes , 1979 .

[45]  C. Sagan,et al.  Evaporation of ice in planetary atmospheres: Ice-covered rivers on Mars , 1979 .

[46]  C. B. Farmer,et al.  Global seasonal variation of water vapor on Mars and the implications for permafrost , 1979 .

[47]  F. Flasar,et al.  Diurnal behaviour of water on Mars , 1976 .

[48]  F. Fanale,et al.  Exchange of adsorbed H2O and CO2 between the regolith and atmosphere of Mars caused by changes in surface insolation , 1974 .

[49]  K. J. Sladek,et al.  Diffusion on Surfaces. I. Effect of Concentration on the Diffusivity of Physically Adsorbed Gases , 1974 .

[50]  G. Neugebauer,et al.  Preliminary report on infrared radiometric measurements from the Mariner 9 spacecraft , 1973 .

[51]  R. A. Aziz,et al.  Empirical Equations to Calculate 16 of the Transport Collision Integrals Ω(l, s)* for the Lennard‐Jones (12–6) Potential , 1972 .

[52]  F. Fanale,et al.  Adsorption on the Martian Regolith , 1971, Nature.

[53]  I. Nagata,et al.  GASEOUS INTERDIFFUSION COEFFICIENTS , 1970 .

[54]  Andrew P. Ingersoll,et al.  Mars: Occurrence of Liquid Water , 1970, Science.

[55]  J. Prausnitz,et al.  Diffusivities of water in nonpolar gases , 1969 .

[56]  R. Smoluchowski Mars: Retention of Ice , 1968, Science.

[57]  E. Opik,et al.  The Martian Surface , 1966, Science.

[58]  R. Papendick,et al.  TRANSIENT‐STATE OXYGEN DIFFUSION IN SOIL: I. THE CASE WHEN RATE OF OXYGEN CONSUMPTION IS CONSTANT , 1965 .

[59]  J. M. Coulson,et al.  Heat Transfer , 2018, A Concise Manual of Engineering Thermodynamics.

[60]  G. M. Watson,et al.  Gaseous Diffusion in Porous Media at Uniform Pressure , 1961 .

[61]  J. Currie,et al.  Gaseous diffusion in porous media. Part 2. - Dry granular materials , 1960 .

[62]  I. Amdur,et al.  Kinetic Theory of Gases , 1959 .

[63]  K. Kobe The properties of gases and liquids , 1959 .

[64]  P. Eisenklam,et al.  Flow Through Porous Media , 1957, Nature.

[65]  W. L. Crider THE USE OF DIFFUSION COEFFICIENTS IN THE MEASUREMENT OF VAPOR PRESSURE , 1956 .

[66]  K. Rossié Die Diffusion von Wasserdampf in Luft bei Temperaturen bis 300°C , 1953 .

[67]  F. A. Schwertz,et al.  Diffusivity of Water Vapor in Some Common Gases , 1951 .

[68]  W. G. Pollard,et al.  On Gaseous Self-Diffusion in Long Capillary Tubes , 1948 .

[69]  T. G. Cowling,et al.  The mathematical theory of non-uniform gases , 1939 .

[70]  R. H. Fowler The Mathematical Theory of Non-Uniform Gases , 1939, Nature.

[71]  EZER GRIFFITHS,et al.  International Critical Tables of Numerical Data, Physics, Chemistry and Technology , 1927, Nature.

[72]  G. Guglielmo Sulla determinazione del coefficiente di diffusione del vapor acqueo nell’aria, nell’idrogeno e nell’acido carbonico , 1883 .

[73]  Stephen W. Webb,et al.  Gas transport in porous media , 2006 .

[74]  J. Laskar,et al.  A GCM Recent History of Northern Martian Polar Layered Deposits: Contribution from Past Equatorial Ice Reservoirs , 2005 .

[75]  H. Keller,et al.  Stability of water ice under a porous nonvolatile layer: implications to the south polar layered deposits of Mars , 2001 .

[76]  Bob Hardy,et al.  ITS-90 FORMULATIONS FOR VAPOR PRESSURE, FROSTPOINT TEMPERATURE, DEWPOINT TEMPERATURE, AND ENHANCEMENT FACTORS IN THE RANGE -100 TO +100 C , 1998 .

[77]  A. Zent THE EVOLUTION OF THE MARTIAN CLIMATE , 1996 .

[78]  W. M. Haynes CRC Handbook of Chemistry and Physics , 1990 .

[79]  Norman Epstein,et al.  On tortuosity and the tortuosity factor in flow and diffusion through porous media , 1989 .

[80]  Cary R. Spitzer,et al.  Physical properties of the surface materials at the Viking landing sites on Mars , 1987 .

[81]  A. Zolotukhina,et al.  Thermal diffusion in gases , 1982 .

[82]  G. Rhead Diffusion on surfaces , 1975 .

[83]  R. C. Weast CRC Handbook of Chemistry and Physics , 1973 .

[84]  Edward A. Mason,et al.  Gaseous Diffusion Coefficients , 1972 .

[85]  Jacob Bear,et al.  Flow through porous media , 1969 .

[86]  M. Trautz,et al.  Die Reibung, Wärmeleitung und Diffusion in Gasmischungen XXXIII. Die Korrektion der bisher mit der Verdampfungsmethode gemessenen Diffusionskonstanten† , 1935 .

[87]  M. Trautz,et al.  Die Reibung, Wärmeleitung und Diffusion in Gasmischungen XXXIV. Neue Messungen von Diffusionskonstanten und abschließende Zusammenfassung ) über Gas-Diffusionskonstanten , 1935 .

[88]  ARTHUR SCHUSTER,et al.  The Kinetic Theory of Gases , 1895, Nature.

[89]  A. Winkelmann Ueber den Einfluss der Temperatur auf die Verdampfung und auf die Diffusion von Dämpfen , 1889 .

[90]  A. Winkelmann Ueber die Diffusion von Gasen und Dämpfen , 1884 .