An Algebra of Reversible Quantum Computing

We extend the algebra of reversible computation to support quantum computing. Since the algebra is based on true concurrency, it is reversible for quantum computing and it has a sound and complete theory.

[1]  Wan Fokkink,et al.  Introduction to Process Algebra , 1999, Texts in Theoretical Computer Science. An EATCS Series.

[2]  Yong Wang An algebra of reversible computation , 2016, SpringerPlus.

[3]  Robin Milner,et al.  Communication and concurrency , 1989, PHI Series in computer science.

[4]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[5]  Iain C. C. Phillips,et al.  Reversing algebraic process calculi , 2006, J. Log. Algebraic Methods Program..

[6]  Gordon D. Plotkin,et al.  A structural approach to operational semantics , 2004, J. Log. Algebraic Methods Program..

[7]  D. Knuth,et al.  Simple Word Problems in Universal Algebras , 1983 .

[8]  Samson Abramsky,et al.  A Structural Approach to Reversible Computation , 2005, Theor. Comput. Sci..

[9]  Jan A. Bergstra,et al.  On the Consistency of Koomen's Fair Abstraction Rule , 1987, Theor. Comput. Sci..

[10]  Ilaria Castellani,et al.  Flow Models of Distributed Computations: Three Equivalent Semantics for CCS , 1994, Inf. Comput..

[11]  Jos C. M. Baeten,et al.  A brief history of process algebra , 2005, Theor. Comput. Sci..

[12]  Yong Wang,et al.  An Axiomatization for Quantum Processes to Unifying Quantum and Classical Computing , 2013, International Journal of Theoretical Physics.

[13]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[14]  Yong Wang,et al.  Entanglement in Quantum Process Algebra , 2014, International Journal of Theoretical Physics.

[15]  Vincent Danos,et al.  Transactions in RCCS , 2005, CONCUR.

[16]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[17]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[18]  Ilaria Castellani,et al.  A non-interleaving semantics for CCS based on proved transitions , 1988 .

[19]  Guang-Can Guo,et al.  Experimental Test of the State Estimation-Reversal Tradeoff Relation in General Quantum Measurements , 2014 .