Query representation by structured concept threads with application to interactive video retrieval

In this paper, we provide a new formulation for video queries as structured combination of concept threads, contributing to the general query-by-concept paradigm. Occupying a low-dimensional region in the concept space, concept thread defines a ranked list of video documents ordered by their combined concept predictions. This localized representation incorporates the previous concept based formulation as a special case and extends the restricted AND concept combination logic to a two-level concept inference network. We apply this new formulation to interactive video retrieval and utilize abundant feedback information to mine the latent semantic concept threads for answering complex query semantics. Simulative experiments which are conducted on two years' TRECVID data sets with two sets of concept lexicons demonstrate the advantage of the proposed formulation. The proposed query formulation offers some 60% improvements over the simple browsing search baseline in nearly real time. It has clear advantages over c-tf-idf and achieves better results over the state-of-the-art online ordinal reranking approach. Meanwhile, it not only alleviates user's workload significantly but also is robust to user mislabeling errors.

[1]  Marcel Worring,et al.  Content-Based Image Retrieval at the End of the Early Years , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  Milind R. Naphade,et al.  Learning the semantics of multimedia queries and concepts from a small number of examples , 2005, MULTIMEDIA '05.

[3]  Alexander G. Hauptmann,et al.  The Use and Utility of High-Level Semantic Features in Video Retrieval , 2005, CIVR.

[4]  Rong Yan,et al.  Extreme video retrieval: joint maximization of human and computer performance , 2006, MM '06.

[5]  Dennis Koelma,et al.  The MediaMill TRECVID 2008 Semantic Video Search Engine , 2008, TRECVID.

[6]  Shih-Fu Chang,et al.  A reranking approach for context-based concept fusion in video indexing and retrieval , 2007, CIVR '07.

[7]  Dong Wang,et al.  Video diver: generic video indexing with diverse features , 2007, MIR '07.

[8]  Michael G. Christel Establishing the utility of non-text search for news video retrieval with real world users , 2007, ACM Multimedia.

[9]  Shih-Fu Chang,et al.  Video search reranking via information bottleneck principle , 2006, MM '06.

[10]  Shih-Fu Chang,et al.  Columbia University’s Baseline Detectors for 374 LSCOM Semantic Visual Concepts , 2007 .

[11]  Marcel Worring,et al.  Are Concept Detector Lexicons Effective for Video Search? , 2007, 2007 IEEE International Conference on Multimedia and Expo.

[12]  Tie-Yan Liu,et al.  Learning to rank: from pairwise approach to listwise approach , 2007, ICML '07.

[13]  Milind R. Naphade,et al.  Semantic Multimedia Retrieval using Lexical Query Expansion and Model-Based Reranking , 2006, 2006 IEEE International Conference on Multimedia and Expo.

[14]  Tomasz Imielinski,et al.  Mining association rules between sets of items in large databases , 1993, SIGMOD Conference.

[15]  Marcel Worring,et al.  A Learned Lexicon-Driven Paradigm for Interactive Video Retrieval , 2007, IEEE Transactions on Multimedia.

[16]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[17]  Marcel Worring,et al.  The Semantic Pathfinder: Using an Authoring Metaphor for Generic Multimedia Indexing , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  Paul Over,et al.  Evaluation campaigns and TRECVid , 2006, MIR '06.

[19]  Dong Wang,et al.  Mapping Query to Semantic Concepts: Leveraging Semantic Indices for Automatic and Interactive Video Retrieval , 2007, International Conference on Semantic Computing (ICSC 2007).

[20]  John R. Smith,et al.  Large-scale concept ontology for multimedia , 2006, IEEE MultiMedia.

[21]  Dong Wang,et al.  Video search in concept subspace: a text-like paradigm , 2007, CIVR '07.

[22]  John Adcock,et al.  FXPAL Interactive Search Experiments for TRECVID 2007 , 2007, TRECVID.

[23]  Akiko Aizawa,et al.  An information-theoretic perspective of tf-idf measures , 2003, Inf. Process. Manag..

[24]  Dong Wang,et al.  Learning structured concept-segments for interactive video retrieval , 2008, CIVR '08.

[25]  Jin Zhao,et al.  Video Retrieval Using High Level Features: Exploiting Query Matching and Confidence-Based Weighting , 2006, CIVR.

[26]  Dong Wang,et al.  The importance of query-concept-mapping for automatic video retrieval , 2007, ACM Multimedia.

[27]  John R. Smith,et al.  IBM Research TRECVID-2009 Video Retrieval System , 2009, TRECVID.

[28]  Marcel Worring,et al.  Adding Semantics to Detectors for Video Retrieval , 2007, IEEE Transactions on Multimedia.

[29]  Yi-Hsuan Yang,et al.  Video search reranking via online ordinal reranking , 2008, 2008 IEEE International Conference on Multimedia and Expo.

[30]  Shih-Fu Chang,et al.  Columbia University TRECVID 2007 High-Level Feature Extraction , 2007, TRECVID.

[31]  Alan F. Smeaton,et al.  A Comparison of Score, Rank and Probability-Based Fusion Methods for Video Shot Retrieval , 2005, CIVR.

[32]  Bo Zhang,et al.  Using High-Level Semantic Features in Video Retrieval , 2006, CIVR.

[33]  Fiona Fui-Hoon Nah,et al.  A study on tolerable waiting time: how long are Web users willing to wait? , 2004, AMCIS.

[34]  Winston H. Hsu,et al.  Video Search and High-Level Feature Extraction , 2005 .

[35]  Chong-Wah Ngo,et al.  Ontology-enriched semantic space for video search , 2007, ACM Multimedia.

[36]  Rong Yan,et al.  Semantic concept-based query expansion and re-ranking for multimedia retrieval , 2007, ACM Multimedia.

[37]  Marcel Worring,et al.  Query on demand video browsing , 2007, ACM Multimedia.

[38]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.