Static and dynamic analysis of the Internet's susceptibility to faults and attacks

The susceptibility of the Internet to random faults, malicious attacks, and mixtures of faults and attacks are analyzed. We analyze actual Internet data, as well as simulated data created with network models. The network models generalize previous research, and allow generation of graphs ranging from uniform to preferential, and from static to dynamic. We introduce new metrics for analyzing the connectivity and performance of networks which improve upon metrics used in earlier research. Previous research has shown that preferential networks like the Internet are more robust to random failures compared to uniform networks. We find that preferential networks, including the Internet, are more robust only when more than 95% of failures are random faults, and robustness is measured with average diameter. The advantage of preferential networks disappears with alternative metrics, and when a small fraction of faults are attacks. We also identify dynamic characteristics of the Internet which can be used to create improved network models. This model should allow more accurate analysis for the future Internet, for example facilitating the design of network protocols with optimal performance in the future, or predicting future attack and fault tolerance. We find that the Internet is becoming more preferential as it evolves. The average diameter has been stable or even decreasing as the number of nodes has been increasing. The Internet is becoming more robust to random failures over time, but has also become more vulnerable to attacks.

[1]  S. N. Dorogovtsev,et al.  Multifractal properties of growing networks , 2002 .

[2]  Jon M. Kleinberg,et al.  The Web as a Graph: Measurements, Models, and Methods , 1999, COCOON.

[3]  Lada A. Adamic,et al.  Power-Law Distribution of the World Wide Web , 2000, Science.

[4]  C. Lee Giles,et al.  Accessibility of information on the web , 1999, Nature.

[5]  MedinaAlberto,et al.  On the origin of power laws in Internet topologies , 2000 .

[6]  Gábor Vattay,et al.  On the propagation of long-range dependence in the Internet , 2000, SIGCOMM 2000.

[7]  R Pastor-Satorras,et al.  Dynamical and correlation properties of the internet. , 2001, Physical review letters.

[8]  Kenneth L. Calvert,et al.  Modeling Internet topology , 1997, IEEE Commun. Mag..

[9]  Cohen,et al.  Resilience of the internet to random breakdowns , 2000, Physical review letters.

[10]  Andrew V. Goldberg,et al.  Towards an archival Intermemory , 1998, Proceedings IEEE International Forum on Research and Technology Advances in Digital Libraries -ADL'98-.

[11]  Béla Bollobás,et al.  Random Graphs: Notation , 2001 .

[12]  Thomas R. Gross,et al.  Topology discovery for large ethernet networks , 2001, SIGCOMM 2001.

[13]  Robert M. May,et al.  How Many Species Are There on Earth? , 1988, Science.

[14]  Michael Luby,et al.  A digital fountain approach to reliable distribution of bulk data , 1998, SIGCOMM '98.

[15]  Andrew V. Goldberg,et al.  A prototype implementation of archival Intermemory , 1999, DL '99.

[16]  Christopher R. Palmer,et al.  Generating network topologies that obey power laws , 2000, Globecom '00 - IEEE. Global Telecommunications Conference. Conference Record (Cat. No.00CH37137).

[17]  S. N. Dorogovtsev,et al.  Growing network with heritable connectivity of nodes , 2000, cond-mat/0011077.

[18]  S N Dorogovtsev,et al.  Comment on "breakdown of the Internet under intentional attack". , 2001, Physical review letters.

[19]  Gerd Hoff,et al.  Finding Scientific Papers with HPSearch and MOPS , 1999, Universität Trier, Mathematik/Informatik, Forschungsbericht.

[20]  S. N. Dorogovtsev,et al.  Structure of Growing Networks: Exact Solution of the Barabasi--Albert's Model , 2000, cond-mat/0004434.

[21]  S. N. Dorogovtsev,et al.  Scaling Behaviour of Developing and Decaying Networks , 2000, cond-mat/0005050.

[22]  Heejo Lee,et al.  On the effectiveness of probabilistic packet marking for IP traceback under denial of service attack , 2001, Proceedings IEEE INFOCOM 2001. Conference on Computer Communications. Twentieth Annual Joint Conference of the IEEE Computer and Communications Society (Cat. No.01CH37213).

[23]  Robert Morris,et al.  Chord: A scalable peer-to-peer lookup service for internet applications , 2001, SIGCOMM 2001.

[24]  Ibrahim Matta,et al.  On the origin of power laws in Internet topologies , 2000, CCRV.

[25]  Ramesh Govindan,et al.  Heuristics for Internet map discovery , 2000, Proceedings IEEE INFOCOM 2000. Conference on Computer Communications. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies (Cat. No.00CH37064).

[26]  Mark Crovella,et al.  Characteristics of WWW Client-based Traces , 1995 .

[27]  S. N. Dorogovtsev,et al.  Pseudofractal scale-free web. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  David M. Pennock,et al.  Winners don't take all: Characterizing the competition for links on the web , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[29]  Steven Glassman,et al.  A Caching Relay for the World Wide Web , 1994, Comput. Networks ISDN Syst..

[30]  V. Rich Personal communication , 1989, Nature.

[31]  S. Havlin,et al.  Breakdown of the internet under intentional attack. , 2000, Physical review letters.

[32]  Matthew Doar,et al.  A better model for generating test networks , 1996, Proceedings of GLOBECOM'96. 1996 IEEE Global Telecommunications Conference.

[33]  Massimo Marchiori,et al.  Error and attacktolerance of complex network s , 2004 .

[34]  D S Callaway,et al.  Network robustness and fragility: percolation on random graphs. , 2000, Physical review letters.

[35]  Deborah Estrin,et al.  Fault isolation in multicast trees , 2000, SIGCOMM.

[36]  Ravi Kumar,et al.  Trawling the Web for Emerging Cyber-Communities , 1999, Comput. Networks.

[37]  Lada A. Adamic,et al.  Internet: Growth dynamics of the World-Wide Web , 1999, Nature.

[38]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[39]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[40]  S. N. Dorogovtsev,et al.  Scaling properties of scale-free evolving networks: continuous approach. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[41]  Sugih Jamin,et al.  Inet: Internet Topology Generator , 2000 .

[42]  Balachander Krishnamurthy,et al.  On network-aware clustering of Web clients , 2000, SIGCOMM.

[43]  Reka Albert,et al.  Mean-field theory for scale-free random networks , 1999 .

[44]  Edith Cohen,et al.  Improving end-to-end performance of the Web using server volumes and proxy filters , 1998, SIGCOMM '98.

[45]  BERNARD M. WAXMAN,et al.  Routing of multipoint connections , 1988, IEEE J. Sel. Areas Commun..

[46]  Walter Willinger,et al.  The origin of power laws in Internet topologies revisited , 2002, Proceedings.Twenty-First Annual Joint Conference of the IEEE Computer and Communications Societies.

[47]  Roger Wattenhofer,et al.  The impact of Internet policy and topology on delayed routing convergence , 2001, Proceedings IEEE INFOCOM 2001. Conference on Computer Communications. Twentieth Annual Joint Conference of the IEEE Computer and Communications Society (Cat. No.01CH37213).

[48]  S. N. Dorogovtsev,et al.  Anomalous percolation properties of growing networks. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[49]  Albert,et al.  Topology of evolving networks: local events and universality , 2000, Physical review letters.

[50]  S. N. Dorogovtsev,et al.  Evolution of reference networks with aging , 2000, cond-mat/0001419.

[51]  S. N. Dorogovtsev,et al.  WWW and Internet models from 1955 till our days and the ``popularity is attractive'' principle , 2000, cond-mat/0009090.

[52]  Andy Oram,et al.  Peer-to-Peer: Harnessing the Power of Disruptive Technologies , 2001 .

[53]  James E. Pitkow Summary of WWW characterizations , 2004, World Wide Web.

[54]  Kurt Mehlhorn,et al.  LEDA: a platform for combinatorial and geometric computing , 1997, CACM.

[55]  S N Dorogovtsev,et al.  Language as an evolving word web , 2001, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[56]  R. Albert,et al.  The large-scale organization of metabolic networks , 2000, Nature.

[57]  Thomas Bonald,et al.  Statistical bandwidth sharing: a study of congestion at flow level , 2001, SIGCOMM.

[58]  Walter Willinger,et al.  Network topology generators: degree-based vs. structural , 2002, SIGCOMM '02.

[59]  Walter Willinger,et al.  Network topology generators: degree-based vs. structural , 2002, SIGCOMM 2002.

[60]  Roch Guérin,et al.  On the impact of policing and rate guarantees in DiffServ networks: a video streaming application perspective , 2001, SIGCOMM.

[61]  Vern Paxson,et al.  On estimating end-to-end network path properties , 2001, SIGCOMM LA '01.

[62]  L. Amaral,et al.  The web of human sexual contacts , 2001, Nature.

[63]  Paul Barford,et al.  Changes in Web Client Access Patterns , 1998, The Web Conference.

[64]  Marianne Shaw,et al.  Active bridging , 1997, SIGCOMM '97.

[65]  Andrei Z. Broder,et al.  Graph structure in the Web , 2000, Comput. Networks.

[66]  Albert-László Barabási,et al.  Internet: Diameter of the World-Wide Web , 1999, Nature.

[67]  Lili Qiu,et al.  The content and access dynamics of a busy Web site: findings and implications , 2000 .

[68]  S. N. Dorogovtsev,et al.  Evolution of networks with aging of sites , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[69]  Michalis Faloutsos,et al.  On power-law relationships of the Internet topology , 1999, SIGCOMM '99.

[70]  Stanley Wasserman,et al.  Social Network Analysis: Methods and Applications , 1994 .

[71]  M. Baker,et al.  Internet Mobility 4x4 , 1996, SIGCOMM.

[72]  S. N. Dorogovtsev,et al.  Giant strongly connected component of directed networks. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[73]  Huberman,et al.  Strong regularities in world wide web surfing , 1998, Science.

[74]  GrossThomas,et al.  Topology discovery for large ethernet networks , 2001 .

[75]  Fan Chung Graham,et al.  A random graph model for massive graphs , 2000, STOC '00.

[76]  S. N. Dorogovtsev,et al.  Size-dependent degree distribution of a scale-free growing network. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[77]  Steven McCanne,et al.  An active service framework and its application to real-time multimedia transcoding , 1998, SIGCOMM '98.

[78]  Sándor Molnár,et al.  On the propagation of long-range dependence in the Internet , 2000, SIGCOMM.

[79]  Scott Shenker,et al.  Best-effort versus reservations: a simple comparative analysis , 1998, SIGCOMM '98.

[80]  Donald F. Towsley,et al.  On distinguishing between Internet power law topology generators , 2002, Proceedings.Twenty-First Annual Joint Conference of the IEEE Computer and Communications Societies.

[81]  Allison Woodruff,et al.  An Investigation of Documents from the World Wide Web , 1996, Comput. Networks.

[82]  S. N. Dorogovtsev,et al.  Structure of growing networks with preferential linking. , 2000, Physical review letters.

[83]  Mary Baker,et al.  Measuring link bandwidths using a deterministic model of packet delay , 2000, SIGCOMM.

[84]  Margaret H. Pinson,et al.  On the impact of policing and rate guarantees in DiffServ networks: a video streaming application perspective , 2001, SIGCOMM 2001.

[85]  John L. Casti,et al.  Bell curves and monkey languages: When do empirical relations become a law of nature? , 1995, Complex.

[86]  S. N. Dorogovtsev,et al.  Generic scale of the"scale-free"growing networks , 2000 .

[87]  S. N. Dorogovtsev,et al.  Evolution of networks , 2001, cond-mat/0106144.

[88]  M. Newman,et al.  Mean-field solution of the small-world network model. , 1999, Physical review letters.

[89]  Allen B. Downey Using pathchar to estimate Internet link characteristics , 1999, SIGCOMM '99.

[90]  Lada A. Adamic,et al.  The Nature of Markets in the World Wide Web , 1999 .

[91]  Sumeet Sobti,et al.  Synchronizable Databases for the Web , 2000 .

[92]  A. Barabasi,et al.  Scale-free characteristics of random networks: the topology of the world-wide web , 2000 .