Dynamical evolution of the Brillouin precursor in Rocard-Powles-Debye model dielectrics
暂无分享,去创建一个
[1] K. Oughstun,et al. Noninstantaneous, finite rise-time effects on the precursor field formation in linear dispersive pulse propagation , 1995 .
[2] L. Brillouin,et al. Über die Fortpflanzung des Lichtes in dispergierenden Medien , 1914 .
[3] J. McConnell,et al. Rotational Brownian motion and dielectric theory , 1980 .
[4] K. Oughstun. Dynamical Structure of the Precursor Fields in Linear Dispersive Pulse Propagation in Lossy Dielectrics , 1995 .
[5] D. A. Dunnett. Classical Electrodynamics , 2020, Nature.
[6] F. Olver. Why Steepest Descents , 1970 .
[7] R. Fox,et al. Classical Electrodynamics, 3rd ed. , 1999 .
[8] Jakob J. Stamnes,et al. UNIFORM ASYMPTOTIC DESCRIPTION OF THE BRILLOUIN PRECURSOR IN A SINGLE-RESONANCE LORENTZ MODEL DIELECTRIC , 1998 .
[9] George C. Sherman,et al. Uniform asymptotic description of electromagnetic pulse propagation in a linear dispersive medium with absorption (the Lorentz medium) , 1989 .
[10] Shane Cloude,et al. Ultra-Wideband, Short-Pulse Electromagnetics 5 , 2002 .
[11] A. Sommerfeld,et al. Über die Fortpflanzung des Lichtes in dispergierenden Medien , 1914 .
[12] George C. Sherman,et al. Electromagnetic Pulse Propagation in Causal Dielectrics , 1994 .
[13] C. Chester,et al. An extension of the method of steepest descents , 1957, Mathematical Proceedings of the Cambridge Philosophical Society.
[14] K. Oughstun. Pulse propagation in a linear, causally dispersive medium , 1990, Proc. IEEE.
[15] K. Oughstun,et al. Dispersive pulse propagation in a double-resonance Lorentz medium , 1989 .
[16] Electromagnetic impulse response of triply-distilled water , 1998 .
[17] George C. Sherman,et al. Description of Pulse Dynamics in Lorentz Media in Terms of the Energy Velocity and Attenuation of Time-Harmonic Waves , 1981 .
[18] Sherman,et al. Uniform asymptotic description of ultrashort rectangular optical pulse propagation in a linear, causally dispersive medium. , 1990, Physical review. A, Atomic, molecular, and optical physics.
[19] K. Oughstun,et al. Failure of the group-velocity description for ultrawideband pulse propagation in a causally dispersive, absorptive dielectric , 1999 .
[20] L. Mandel. Interpretation of Instantaneous Frequencies , 1974 .
[21] Z. Kam,et al. Absorption and Scattering of Light by Small Particles , 1998 .
[22] G. Sherman,et al. Propagation of electromagnetic pulses in a linear dispersive medium with absorption (the Lorentz medium) , 1988 .
[23] P. Debye,et al. Näherungsformeln für die Zylinderfunktionen für große Werte des Arguments und unbeschränkt veränderliche Werte des Index , 1909 .
[24] Oughstun,et al. Uniform asymptotic description of ultrashort Gaussian-pulse propagation in a causal, dispersive dielectric. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[25] Nicholas Chako,et al. Wave propagation and group velocity , 1960 .
[26] E. B. Wilson,et al. The Theory of Electrons , 1911 .
[27] K. Oughstun,et al. Electromagnetic energy dissipation and propagation of an ultrawideband plane wave pulse in a causally dispersive dielectric , 1998 .