The Optimal Set and Optimal Partition Approach to Linear and Quadratic Programming

In this chapter we describe the optimal set approach for sensitivity analysis for LP. We show that optimal partitions and optimal sets remain constant between two consecutive transition-points of the optimal value function. The advantage of using this approach instead of the classical approach (using optimal bases) is shown. Moreover, we present an algorithm to compute the partitions, optimal sets and the optimal value function. This is a new algorithm and uses primal and dual optimal solutions. We also extend some of the results to parametric quadratic programming, and discuss differences and resemblances with the linear programming case.

[1]  H. Markowitz The optimization of a quadratic function subject to linear constraints , 1956 .

[2]  A. J. Goldman,et al.  4. Theory of Linear Programming , 1957 .

[3]  J. E. Kelley PARAMETRIC PROGRAMMING AND THE PRIMAL-DUAL ALGORITHM , 1959 .

[4]  A. Charnes,et al.  Systems Evaluation and Repricing Theorems , 1962 .

[5]  A. Charnes,et al.  Duality in Semi-Infinite Programs and some Works of Haar and Caratheodory , 1963 .

[6]  Bernard Bereanu A property of convex piecewise linear functions with applications to mathematical programming , 1965, Unternehmensforschung.

[7]  Werner Dinkelbach,et al.  Sensitivitätsanalysen und parametrische Programmierung , 1969 .

[8]  H. Bialy,et al.  W. Dinkelbach, Sensitivitätsanalysen und parametrische Programmierung. (Ökonometrie und Unternehmensforschung, Band XII). XI + 190 S. Berlin/Heidelberg/New York 1969. Springer-Verlag. Preis geb. DM 48, - . , 1970 .

[9]  Katta G. Murty,et al.  Computational complexity of parametric linear programming , 1980, Math. Program..

[10]  L. McLinden An analogue of Moreau's proximation theorem, with application to the nonlinear complementarity problem. , 1980 .

[11]  Joseph G. Ecker,et al.  Postoptimal analyses, parametric programming, and related topics: McGraw-Hill, Düsseldorf, 1979, xvii + 380 pages, DM 104.- , 1981 .

[12]  Narendra Karmarkar,et al.  A new polynomial-time algorithm for linear programming , 1984, STOC '84.

[13]  Narendra Karmarkar,et al.  A new polynomial-time algorithm for linear programming , 1984, Comb..

[14]  H. J. Greenberg An analysis of degeneracy , 1986 .

[15]  J. Vörös,et al.  Portfolio analysis--an analytic derivation of the efficient portfolio frontier , 1986 .

[16]  J. Vörös The explicit derivation of the efficient portfolio frontier in the case of degeneracy and general singularity , 1987 .

[17]  Notes on the Markowitz portfolio selection method , 1988 .

[18]  James E. Ward,et al.  Approaches to sensitivity analysis in linear programming , 1991 .

[19]  Harvey M. Wagner,et al.  Shadow Prices: Tips and Traps for Managers and Instructors , 1990 .

[20]  John M. Mulvey,et al.  Higher-Order Predictor-Corrector Interior Point Methods with Application to Quadratic Objectives , 1993, SIAM J. Optim..

[21]  Tamás Terlaky,et al.  An interior point approach to postoptimal and parametric analysis in linear programming Report 92-21 , 1993 .

[22]  Yinyu Ye,et al.  Convergence behavior of interior-point algorithms , 1993, Math. Program..

[23]  Dick den Hertog,et al.  Interior Point Approach to Linear, Quadratic and Convex Programming: Algorithms and Complexity , 1994 .

[24]  B. Jansen,et al.  Sensitivity Analysis in (Degenerate) Quadratic Programming , 1996 .

[25]  Benjamin Jansen,et al.  Interior Point Techniques in Optimization , 1997 .

[26]  J. F. Sturm,et al.  Analytic Central Path, Sensitivity Analysis and Parametric Linear Programming , 1997 .