Eccentric Black Hole Mergers Forming in Globular Clusters

We derive the probability for a newly formed binary black hole (BBH) to undergo an eccentric gravitational wave (GW) merger during binary-single interactions inside a stellar cluster. By integrating over the hardening interactions such a BBH must undergo before ejection, we find that the observable rate of BBH mergers with eccentricity $>0.1$ at $10\ \rm{Hz}$ relative to the rate of circular mergers can be as high as $\sim 5\%$ for a typical globular cluster (GC). This further suggests that BBH mergers forming through GW captures in binary-single interactions, eccentric or not, are likely to constitute $\sim 10\%$ of the total BBH merger rate from GCs. Such GW capture mergers can only be probed with an $N$-body code that includes General Relativistic corrections, which explains why several recent cluster studies report an eccentric merger rate that is $\sim 100$ times too low. Finally, we show that the relative rate of eccentric BBH mergers depends on the compactness of their host cluster, suggesting that an observed eccentricity distribution can be used to probe the origin of BBH mergers.

[1]  Takahiro Tanaka,et al.  Primordial Black Hole Scenario for the Gravitational-Wave Event GW150914. , 2016, Physical review letters.

[2]  V. Kalogera Spin-Orbit Misalignment in Close Binaries with Two Compact Objects , 1999, astro-ph/9911417.

[3]  Douglas C. Heggie,et al.  Binary evolution in stellar dynamics , 1975 .

[4]  Ataru Tanikawa,et al.  Dynamical evolution of stellar mass black holes in dense stellar clusters: estimate for merger rate of binary black holes originating from globular clusters , 2013, 1307.6268.

[5]  Enrico Ramirez-Ruiz,et al.  Dissipative Evolution of Unequal-mass Binary–single Interactions and Its Relevance to Gravitational-wave Detections , 2017, 1706.03776.

[6]  Three-body dynamics with gravitational wave emission , 2005, astro-ph/0509885.

[7]  Vicky Kalogera,et al.  BLACK HOLE MERGERS AND BLUE STRAGGLERS FROM HIERARCHICAL TRIPLES FORMED IN GLOBULAR CLUSTERS , 2015, 1509.05080.

[8]  Lawrence E. Kidder,et al.  Complete waveform model for compact binaries on eccentric orbits , 2016, 1609.05933.

[9]  B. A. Boom,et al.  Binary Black Hole Mergers in the First Advanced LIGO Observing Run , 2016, 1606.04856.

[10]  B. Carr,et al.  Primordial Black Holes as Dark Matter , 2016, 1607.06077.

[11]  Bence Kocsis,et al.  Rapid and Bright Stellar-mass Binary Black Hole Mergers in Active Galactic Nuclei , 2016, 1602.03831.

[12]  McMillan,et al.  Black Hole Mergers in the Universe , 1999, The Astrophysical journal.

[13]  Alain Chenciner,et al.  Three body problem , 2007, Scholarpedia.

[14]  B. Liu,et al.  Spin–Orbit Misalignment of Merging Black Hole Binaries with Tertiary Companions , 2017, 1706.02309.

[15]  John N. Bahcall,et al.  Binary-single star scattering. I: Numerical experiments for equal masses , 1983 .

[16]  B. A. Boom,et al.  GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. , 2017, Physical review letters.

[17]  Chunglee Kim,et al.  Compact binaries ejected from globular clusters as gravitational wave sources , 2013, 1308.1641.

[18]  D Huet,et al.  GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence , 2016 .

[19]  T. Bulik,et al.  MOCCA-SURVEY Database - I. Coalescing binary black holes originating from globular clusters , 2016, 1608.02520.

[20]  R. O. Hansen POST-NEWTONIAN GRAVITATIONAL RADIATION FROM POINT MASSES IN A HYPERBOLIC KEPLER ORBIT. , 1972 .

[21]  D. Richardson,et al.  THE ROLE OF THE KOZAI–LIDOV MECHANISM IN BLACK HOLE BINARY MERGERS IN GALACTIC CENTERS , 2016, 1604.04948.

[22]  Chris L. Fryer,et al.  DOUBLE COMPACT OBJECTS. III. GRAVITATIONAL-WAVE DETECTION RATES , 2014, 1405.7016.

[23]  J. Ostriker,et al.  Formation of massive black holes in galactic nuclei: runaway tidal encounters , 2016, 1606.01909.

[24]  Johan Samsing,et al.  Topology of black hole binary–single interactions , 2017, 1706.04672.

[25]  Pavel Kroupa,et al.  Stellar-mass black holes in star clusters: implications for gravitational-wave radiation , 2009, Proceedings of the International Astronomical Union.

[26]  Bence Kocsis,et al.  Accuracy of Estimating Highly Eccentric Binary Black Hole Parameters with Gravitational-wave Detections , 2017, 1705.10781.

[27]  Von Welch,et al.  Reproducing GW150914: The First Observation of Gravitational Waves From a Binary Black Hole Merger , 2016, Computing in Science & Engineering.

[28]  C. Haster,et al.  DYNAMICAL FORMATION OF THE GW150914 BINARY BLACK HOLE , 2016, 1604.04254.

[29]  B. A. Boom,et al.  GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. , 2017, Physical review letters.

[30]  Chunglee Kim,et al.  Black hole binaries dynamically formed in globular clusters , 2017, 1703.01568.

[31]  P. C. Peters Gravitational Radiation and the Motion of Two Point Masses , 1964 .

[32]  Frederic A. Rasio,et al.  MERGING BLACK HOLE BINARIES IN GALACTIC NUCLEI: IMPLICATIONS FOR ADVANCED-LIGO DETECTIONS , 2016, 1606.04889.

[33]  L. Wen On the Eccentricity Distribution of Coalescing Black Hole Binaries Driven by the Kozai Mechanism in Globular Clusters , 2002, astro-ph/0211492.

[34]  Bharath Pattabiraman,et al.  Binary Black Hole Mergers from Globular Clusters: Implications for Advanced LIGO. , 2015, Physical review letters.

[35]  Hyung-Mok Lee,et al.  Black hole binaries in galactic nuclei and gravitational wave sources , 2015, 1501.02717.

[36]  Enrico Ramirez-Ruiz,et al.  On the Assembly Rate of Highly Eccentric Binary Black Hole Mergers , 2017, 1703.09703.

[37]  B. Metzger,et al.  Assisted inspirals of stellar mass black holes embedded in AGN discs: solving the ‘final au problem’ , 2016, 1602.04226.

[38]  S. Privitera,et al.  Searching for Gravitational Waves from Compact Binaries with Precessing Spins , 2016, 1603.02444.

[39]  Bence Kocsis,et al.  Gravitational waves from scattering of stellar-mass black holes in galactic nuclei , 2008, 0807.2638.

[40]  Tomasz Bulik,et al.  The first gravitational-wave source from the isolated evolution of two stars in the 40–100 solar mass range , 2016, Nature.

[41]  Frederic A. Rasio,et al.  Binary Black Hole Mergers from Globular Clusters: Masses, Merger Rates, and the Impact of Stellar Evolution , 2016, 1602.02444.

[42]  A. Riess,et al.  Did LIGO Detect Dark Matter? , 2016, Physical review letters.

[43]  P. Amaro-Seoane,et al.  Revealing the Formation of Stellar-mass Black Hole Binaries: The Need for Deci-Hertz Gravitational-wave Observatories , 2017, 1702.08479.

[44]  I. Mandel,et al.  DOUBLE COMPACT OBJECTS. II. COSMOLOGICAL MERGER RATES , 2013, 1308.1546.

[45]  C. Pankow,et al.  ILLUMINATING BLACK HOLE BINARY FORMATION CHANNELS WITH SPINS IN ADVANCED LIGO , 2016, 1609.05916.

[46]  S. Naoz The Eccentric Kozai-Lidov Effect and Its Applications , 2016, 1601.07175.

[47]  Roland Haas,et al.  Eccentric, nonspinning, inspiral, Gaussian-process merger approximant for the detection and characterization of eccentric binary black hole mergers , 2017, 1711.06276.

[48]  P. Hut,et al.  The Evolution of a primordial binary population in a globular cluster , 1992 .

[49]  M. Kamionkowski,et al.  Orbital eccentricities in primordial black hole binaries , 2016, 1606.07437.

[50]  Bence Kocsis,et al.  RESONANT POST-NEWTONIAN ECCENTRICITY EXCITATION IN HIERARCHICAL THREE-BODY SYSTEMS , 2012, 1206.4316.

[51]  Bence Kocsis,et al.  Black Hole Mergers in Galactic Nuclei Induced by the Eccentric Kozai–Lidov Effect , 2017, 1706.09896.

[52]  I. Mandel,et al.  DOUBLE COMPACT OBJECTS. I. THE SIGNIFICANCE OF THE COMMON ENVELOPE ON MERGER RATES , 2012, 1202.4901.

[53]  UCSC,et al.  Formation of Tidal Captures and Gravitational Wave Inspirals in Binary-single Interactions , 2016, 1609.09114.

[54]  Enrico Ramirez-Ruiz,et al.  THE FORMATION OF ECCENTRIC COMPACT BINARY INSPIRALS AND THE ROLE OF GRAVITATIONAL WAVE EMISSION IN BINARY–SINGLE STELLAR ENCOUNTERS , 2013, 1308.2964.

[55]  Luc Blanchet,et al.  Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries , 2002, Living reviews in relativity.

[56]  Richard O'Shaughnessy,et al.  COMPACT BINARY MERGER RATES: COMPARISON WITH LIGO/VIRGO UPPER LIMITS , 2015, 1510.04615.