Morphological shape description using geometric spectrum on multidimensional binary images

Abstract A useful morphological shape description tool is presented called geometric spectrum or G-spectrum , for quantifying the geometric features on multidimensional binary images. The basis of this tool relies upon the cardinality of a set of non-overlapping segments in an image using morphological operations. The G-spectrum preserves the translation invariance property. With a chosen set of isotropic structuring elements the G-spectrum also preserves the rotation invariance. After the procedure of normalization, the G-spectrum can also preserve the scaling invariance. The properties and proofs of the G-spectrum are discussed.

[1]  Jeff B. Pelz,et al.  Morphological Granulometric Analysis Of Electrophotographic Images , 1990, Optics & Photonics.

[2]  Frank Y. Shih,et al.  A maxima-tracking method for skeletonization from Euclidean distance function , 1991, [Proceedings] Third International Conference on Tools for Artificial Intelligence - TAI 91.

[3]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[4]  Dan Schonfeld,et al.  Morphological representation of discrete and binary images , 1991, IEEE Trans. Signal Process..

[5]  Petros Maragos,et al.  Pattern Spectrum and Multiscale Shape Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Petros Maragos,et al.  Morphological skeleton representation and coding of binary images , 1984, IEEE Trans. Acoust. Speech Signal Process..

[7]  Frank Y. Shih,et al.  Medial axis transformation with single-pixel and connectivity preservation using Euclidean distance computation , 1990, [1990] Proceedings. 10th International Conference on Pattern Recognition.

[8]  G. Matheron Random Sets and Integral Geometry , 1976 .

[9]  Anastasios N. Venetsanopoulos,et al.  Multidimensional shape description and recognition using mathematical morphology , 1988, J. Intell. Robotic Syst..