Linear Linkage Encoding in Grouping Problems: Applications on Graph Coloring and Timetabling

Linear Linkage Encoding (LLE) is a recently proposed representation scheme for evolutionary algorithms. This representation has been used only in data clustering. However, it is also suitable for grouping problems. In this paper, we investigate LLE on two grouping problems; graph coloring and exam timetabling. Two crossover operators suitable for LLE are proposed and compared to the existing ones. Initial results show that LLE is a viable candidate for grouping problems whenever appropriate genetic operators are used.

[1]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[2]  Alon Itai,et al.  On the Complexity of Timetable and Multicommodity Flow Problems , 1976, SIAM J. Comput..

[3]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[4]  M. Garey Johnson: computers and intractability: a guide to the theory of np- completeness (freeman , 1979 .

[5]  Frank Thomson Leighton,et al.  A Graph Coloring Algorithm for Large Scheduling Problems. , 1979, Journal of research of the National Bureau of Standards.

[6]  Daniel Brélaz,et al.  New methods to color the vertices of a graph , 1979, CACM.

[7]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[8]  Cecilia R. Aragon,et al.  Optimization by Simulated Annealing: An Experimental Evaluation; Part I, Graph Partitioning , 1989, Oper. Res..

[9]  Cecilia R. Aragon,et al.  Optimization by Simulated Annealing: An Experimental Evaluation; Part II, Graph Coloring and Number Partitioning , 1991, Oper. Res..

[10]  Nicholas J. Radcliffe,et al.  Forma Analysis and Random Respectful Recombination , 1991, ICGA.

[11]  David E. Goldberg,et al.  A niched Pareto genetic algorithm for multiobjective optimization , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[12]  Edmund K. Burke,et al.  A Memetic Algorithm for University Exam Timetabling , 1995, PATAT.

[13]  Charles Fleurent,et al.  Genetic and hybrid algorithms for graph coloring , 1996, Ann. Oper. Res..

[14]  David S. Johnson,et al.  Cliques, Coloring, and Satisfiability , 1996 .

[15]  Gilbert Laporte,et al.  Examination Timetabling: Algorithmic Strategies and Applications , 1994 .

[16]  Miodrag Potkonjak,et al.  Efficient coloring of a large spectrum of graphs , 1998, Proceedings 1998 Design and Automation Conference. 35th DAC. (Cat. No.98CH36175).

[17]  Emanuel Falkenauer,et al.  Genetic Algorithms and Grouping Problems , 1998 .

[18]  H. Terashima-Marín,et al.  Clique-based crossover for solving the timetabling problem with GAs , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[19]  Giuseppe Cattaneo,et al.  Algorithm engineering , 1999, CSUR.

[20]  Jin-Kao Hao,et al.  Hybrid Evolutionary Algorithms for Graph Coloring , 1999, J. Comb. Optim..

[21]  Giuseppe F. Italiano,et al.  New Algorithms for Examination Timetabling , 2000, WAE.

[22]  Carlos M. Fonseca,et al.  A Study of Examination Timetabling with Multiobjective Evolutionary Algorithms , 2001 .

[23]  T. Wong,et al.  Final exam timetabling: a practical approach , 2002, IEEE CCECE2002. Canadian Conference on Electrical and Computer Engineering. Conference Proceedings (Cat. No.02CH37373).

[24]  Peter J. Stuckey,et al.  A Hybrid Algorithm for the Examination Timetabling Problem , 2002, PATAT.

[25]  Alain Hertz,et al.  A variable neighborhood search for graph coloring , 2003, Eur. J. Oper. Res..

[26]  Igor L. Markov,et al.  Breaking instance-independent symmetries in exact graph coloring , 2004, Proceedings Design, Automation and Test in Europe Conference and Exhibition.

[27]  Reda Alhajj,et al.  Novel clustering approach that employs genetic algorithm with new representation scheme and multiple objectives , 2004 .

[28]  Ender Özcan,et al.  Final exam scheduler - FES , 2005, 2005 IEEE Congress on Evolutionary Computation.

[29]  Alain Hertz,et al.  Using tabu search techniques for graph coloring , 1987, Computing.