Individual Differences in Rhythmic Cortical Entrainment Correlate with Predictive Behavior in Sensorimotor Synchronization

[1]  P. Keller,et al.  Sensorimotor synchronization with tempo-changing auditory sequences: Modeling temporal adaptation and anticipation , 2015, Brain Research.

[2]  B. Schultz,et al.  Individual Differences in Temporal Anticipation and Adaptation During Sensorimotor Synchronization , 2015 .

[3]  T. Hackett,et al.  Predictive motor control of sensory dynamics in auditory active sensing , 2015, Current Opinion in Neurobiology.

[4]  Hugo Merchant,et al.  Sensorimotor neural dynamics during isochronous tapping in the medial premotor cortex of the macaque , 2015, The European journal of neuroscience.

[5]  Isabelle Peretz,et al.  Capturing with EEG the neural entrainment and coupling underlying sensorimotor synchronization to the beat. , 2015, Cerebral cortex.

[6]  Michael J. Hove,et al.  Rhythm in joint action: psychological and neurophysiological mechanisms for real-time interpersonal coordination , 2014, Philosophical Transactions of the Royal Society B: Biological Sciences.

[7]  Sylvie Nozaradan,et al.  Exploring how musical rhythm entrains brain activity with electroencephalogram frequency-tagging , 2014, Philosophical Transactions of the Royal Society B: Biological Sciences.

[8]  A. Mouraux,et al.  Body Movement Selectively Shapes the Neural Representation of Musical Rhythms , 2014, Psychological science.

[9]  Charles E. Schroeder,et al.  Motor contributions to the temporal precision of auditory attention , 2014, Nature Communications.

[10]  Maria A. G. Witek,et al.  Rhythmic complexity and predictive coding: a novel approach to modeling rhythm and meter perception in music , 2014, Front. Psychol..

[11]  L. Stewart Corrigendum: Dysrhythmia: a specific congenital rhythm perception deficit , 2014, Front. Psychol..

[12]  Ramon Bartolo,et al.  Dynamic Representation of the Temporal and Sequential Structure of Rhythmic Movements in the Primate Medial Premotor Cortex , 2014, The Journal of Neuroscience.

[13]  B. Rossion Understanding individual face discrimination by means of fast periodic visual stimulation , 2014, Experimental Brain Research.

[14]  Hugo Merchant,et al.  Information Processing in the Primate Basal Ganglia during Sensory-Guided and Internally Driven Rhythmic Tapping , 2014, The Journal of Neuroscience.

[15]  Lauren Stewart,et al.  Dysrhythmia: a specific congenital rhythm perception deficit , 2014, Front. Psychol..

[16]  Henkjan Honing,et al.  Are non-human primates capable of rhythmic entrainment? Evidence for the gradual audiomotor evolution hypothesis , 2014, Front. Neurosci..

[17]  Aniruddh D. Patel,et al.  The evolutionary neuroscience of musical beat perception: the Action Simulation for Auditory Prediction (ASAP) hypothesis , 2013, Front. Syst. Neurosci..

[18]  Nina Kraus,et al.  The Ability to Move to a Beat Is Linked to the Consistency of Neural Responses to Sound , 2013, The Journal of Neuroscience.

[19]  Jakub S. Sowinski,et al.  Poor synchronization to the beat may result from deficient auditory-motor mapping , 2013, Neuropsychologia.

[20]  Zhiguo Zhang,et al.  Distinct Features of Auditory Steady-State Responses as Compared to Transient Event-Related Potentials , 2013, PloS one.

[21]  Hugo Merchant,et al.  Interval Tuning in the Primate Medial Premotor Cortex as a General Timing Mechanism , 2013, The Journal of Neuroscience.

[22]  Isabelle Peretz,et al.  Pitch discrimination without awareness in congenital amusia: Evidence from event-related potentials , 2013, Brain and Cognition.

[23]  Isabelle Peretz,et al.  Selective Neuronal Entrainment to the Beat and Meter Embedded in a Musical Rhythm , 2012, The Journal of Neuroscience.

[24]  Daniel Mestre,et al.  Effect of Temporal Organization of the Visuo-Locomotor Coupling on the Predictive Steering , 2012, Front. Psychology.

[25]  M. Tervaniemi,et al.  Practiced musical style shapes auditory skills , 2012, Annals of the New York Academy of Sciences.

[26]  Isabelle Peretz,et al.  Steady-state evoked potentials as an index of multisensory temporal binding , 2012, NeuroImage.

[27]  P. Keller,et al.  Searching for Roots of Entrainment and Joint Action in Early Musical Interactions , 2012, Front. Hum. Neurosci..

[28]  S. Dehaene,et al.  Evidence for a hierarchy of predictions and prediction errors in human cortex , 2011, Proceedings of the National Academy of Sciences.

[29]  S. Baron,et al.  Origins of music , 2011 .

[30]  Isabelle Peretz,et al.  Tagging the Neuronal Entrainment to Beat and Meter , 2011, The Journal of Neuroscience.

[31]  A. Mouraux,et al.  Nociceptive Steady-State Evoked Potentials Elicited by Rapid Periodic Thermal Stimulation of Cutaneous Nociceptors , 2011, The Journal of Neuroscience.

[32]  I. Peretz,et al.  Born to dance but beat deaf: A new form of congenital amusia , 2011, Neuropsychologia.

[33]  J. Gross,et al.  Steady-State Visual Evoked Potentials Can Be Explained by Temporal Superposition of Transient Event-Related Responses , 2011, PloS one.

[34]  A. Cichocki,et al.  Steady-state visually evoked potentials: Focus on essential paradigms and future perspectives , 2010, Progress in Neurobiology.

[35]  Karl J. Friston,et al.  Action and behavior: a free-energy formulation , 2010, Biological Cybernetics.

[36]  J. Devin McAuley,et al.  Neural bases of individual differences in beat perception , 2009, NeuroImage.

[37]  Matthias M. Müller,et al.  Human Neuroscience , 2022 .

[38]  Aniruddh D. Patel,et al.  Top‐Down Control of Rhythm Perception Modulates Early Auditory Responses , 2009, Annals of the New York Academy of Sciences.

[39]  Peter E Keller,et al.  Auditory Pitch Imagery and Its Relationship to Musical Synchronization , 2009, Annals of the New York Academy of Sciences.

[40]  Nina Kraus,et al.  The Neurosciences and Music III: Disorders and Plasticity , 2009 .

[41]  Guy Madison,et al.  Intelligence and Variability in a Simple Timing Task Share Neural Substrates in the Prefrontal White Matter , 2008, The Journal of Neuroscience.

[42]  Robert J. Zatorre,et al.  Moving on Time: Brain Network for Auditory-Motor Synchronization is Modulated by Rhythm Complexity and Musical Training , 2008, Journal of Cognitive Neuroscience.

[43]  B. Repp Sensorimotor synchronization: A review of the tapping literature , 2005, Psychonomic bulletin & review.

[44]  Julien Doyon,et al.  Cerebellum and M1 interaction during early learning of timed motor sequences , 2005, NeuroImage.

[45]  Karl J. Friston,et al.  A theory of cortical responses , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[46]  Justin London,et al.  Hearing in Time: Psychological Aspects of Musical Meter , 2004 .

[47]  Wolfgang Prinz,et al.  Cortical activations associated with auditorily paced finger tapping , 2003, Neuroreport.

[48]  Karl J. Friston Functional integration and inference in the brain , 2002, Progress in Neurobiology.

[49]  G. Aschersleben Temporal Control of Movements in Sensorimotor Synchronization , 2002, Brain and Cognition.

[50]  L. V. Noorden,et al.  Resonance in the Perception of Musical Pulse , 1999 .

[51]  R. Parncutt A Perceptual Model of Pulse Salience and Metrical Accent in Musical Rhythms , 1994 .

[52]  N. Fisher Statistical Analysis of Circular Data , 1993 .

[53]  Peter Essens,et al.  Perception of Temporal Patterns , 1985 .

[54]  S. Makeig,et al.  A 40-Hz auditory potential recorded from the human scalp. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[55]  M. R. Jones,et al.  Time, our lost dimension: toward a new theory of perception, attention, and memory. , 1976, Psychological review.

[56]  R. Johnsen,et al.  Theory and Experiment , 2010 .

[57]  S. D. Bella Disorders and plasticity , 2009 .

[58]  E. Large Resonating to Musical Rhythm : Theory and Experiment , 2008 .

[59]  Diana Deutsch,et al.  Music perception. , 2007, Frontiers in Bioscience.

[60]  Bruno Nettl An ethnomusicologist contemplates universals in musical sound and musical culture , 2000 .

[61]  Rajesh P. N. Rao,et al.  Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. , 1999 .

[62]  D. Regan Human brain electrophysiology: Evoked potentials and evoked magnetic fields in science and medicine , 1989 .