Two New Sandwich-Type Manganese {Mn5}-Substituted Polyoxotungstates: Syntheses, Crystal Structures, Electrochemistry, and Magnetic Properties.

Herein we report two pentanuclear MnII-substituted sandwich-type polyoxotungstate complexes, [{Mn(bpy)}2Na(H2O)2(MnCl)2{Mn(H2O)}(AsW9O33)2]9- and [{Mn(bpy)}2Na(H2O)2(MnCl){Mn(H2O)}2(SbW9O33)2]8- (bpy = 2,2'-bipyridine), whose structures have been obtained by single-crystal X-ray diffraction (SCXRD), complemented by results obtained from elemental analysis, electrospray ionization mass spectrometry, Fourier transform infrared spectroscopy, and thermogravimetric analysis. They consist of two [B-α-XW9O33]9- subunits sandwiching a cyclic assembly of the hexagonal [{Mn(bpy)}2Na(H2O)2(MnCl)2{Mn(H2O)}]9+ and [{Mn(bpy)}2Na(H2O)2(MnCl){Mn(H2O)}2]10+ moieties, respectively, and represent the first pentanuclear MnII-substituted sandwich-type polyoxometalates (POMs). Both compounds have been synthesized by reacting MnCl2·4H2O with trilacunary Na9[XW9O33]·27H2O (X = AsIII and SbIII) POM precursors in the presence of bpy in a 1 M aqueous sodium chloride solution under mild reaction conditions. SCXRD showed that the alternate arrangement of three five-coordinated MnII ions and two six-coordinated MnII ions with an internal Na cation formed a coplanar six-membered ring that was sandwiched between two [B-α-XW9O33]9- (X = AsIII and SbIII) subunits. The results of temperature-dependent direct-current (dc) magnetic susceptibility data indicated ferromagnetic interactions between Mn ions in the cluster. Moreover, alternating-current magnetic susceptibility measurements with a dc-biased magnetic field showed the existence of a ferromagnetic order for both samples. Electrochemistry studies revealed the presence of redox processes assigned to the Mn centers. They are associated with the deposition of material on the working electrode surface, possibly MnxOy, as demonstrated by electrochemical quartz crystal microbalance experiments.

[1]  Chunmei Wang,et al.  Synthesis, crystal structure and properties of sandwich type compounds based on {AsW9} and a hexa-nuclear unit with three supporting TM–triazole complexes , 2015 .

[2]  Jingping Wang,et al.  Polyoxotungstate incorporating organotriphosphonate ligands: synthesis, characterization, and catalytic for alkene epoxidation. , 2015, Inorganic chemistry.

[3]  U. Stimming,et al.  Electrochemical studies of tri-manganese substituted Keggin Polyoxoanions , 2014 .

[4]  A. Powell,et al.  Synthesis and characterization of multinuclear manganese-containing tungstosilicates. , 2014, Inorganic Chemistry.

[5]  A. Powell,et al.  Multinuclear cobalt(II)-containing heteropolytungstates: structure, magnetism, and electrochemistry. , 2014, Inorganic chemistry.

[6]  P. Molina,et al.  Assembly and core transformation properties of two tetrahedral clusters: [Fe(III)13P8W60O227(OH)15(H2O)2]30- and [Fe(III)13P8W60O224(OH)12(PO4)4]33-. , 2014, Dalton transactions.

[7]  A. Powell,et al.  Synthesis, magnetism, and electrochemistry of the Ni14- and Ni5-containing heteropolytungstates [Ni14(OH)6(H2O)10(HPO4)4(P2W15O56)4]34- and [Ni5(OH)4(H2O)4(β-GeW9O34)(β-GeW8O30(OH))]13-. , 2013, Inorganic chemistry.

[8]  Jingping Wang,et al.  Nona-copper(II)-containing 18-tungsto-8-arsenate(III) exhibits antitumor activity. , 2013, Chemical communications.

[9]  J. Poblet,et al.  Cobalt polyoxometalates as heterogeneous water oxidation catalysts. , 2013, Inorganic chemistry.

[10]  Jingping Wang,et al.  Crystal Structure and Magnetic Property of a 2-D Hexa-Circular Ring Cu(II)/Na(I)-Substituted Sandwich-Type Arsenotungstate , 2013, Journal of Cluster Science.

[11]  Jie Li,et al.  Synthesis and characterization of hybrid organic-inorganic, dimeric tungstoantimonate, {[Cu(En)2(H2O)]2[Cu4Na2(H2O)2(OH)2](α-SbW9O33)2}6−1 , 2012, Russian Journal of Inorganic Chemistry.

[12]  T. Yamase,et al.  Molecular magnetism of M6 hexagon ring in D(3d) symmetric [(MCl)6(XW9O33)2](12-) (M = Cu(II) and Mn(II), X = Sb(III) and As(III)). , 2012, Inorganic chemistry.

[13]  M. Speldrich,et al.  A polyoxometalate-based single-molecule magnet with an S = 21/2 ground state. , 2012, Chemical communications.

[14]  A. Dolbecq,et al.  Surface immobilisation of the sandwich type Na14[Fe4(Ox)4(H2O)2(SbW9O33)2]·60H2O polyoxometalate , 2012 .

[15]  Scott G. Mitchell,et al.  A mixed-valence manganese cubane trapped by inequivalent trilacunary polyoxometalate ligands. , 2011, Angewandte Chemie.

[16]  R. Finke,et al.  Electrocatalytic water oxidation beginning with the cobalt polyoxometalate [Co4(H2O)2(PW9O34)2]10-: identification of heterogeneous CoOx as the dominant catalyst. , 2011, Journal of the American Chemical Society.

[17]  C. Streb,et al.  Water exchange reactivity and stability of cobalt polyoxometalates under catalytically relevant pH conditions: insight into water oxidation catalysis. , 2011, Inorganic chemistry.

[18]  Jingping Wang,et al.  A novel organic–inorganic hybrid turbine-shaped hexa-Zn sandwiched tungstoarsenate(III) , 2011 .

[19]  J. Marrot,et al.  Manganese(III)-containing Wells-Dawson sandwich-type polyoxometalates: comparison with their manganese(II) counterparts. , 2011, Inorganic Chemistry.

[20]  N. Dalal,et al.  A planar {Mn19(OH)12}26+ unit incorporated in a 60-tungsto-6-silicate polyanion. , 2011, Angewandte Chemie.

[21]  Graham N. Newton,et al.  Redox-controlled magnetic {Mn13} Keggin systems. , 2011, Angewandte Chemie.

[22]  M. Speldrich,et al.  Molecular growth of a core-shell polyoxometalate. , 2011, Angewandte Chemie.

[23]  A. Powell,et al.  Hexadecacobalt(II)-containing polyoxometalate-based single-molecule magnet. , 2011, Angewandte Chemie.

[24]  Pengtao Ma,et al.  A novel 1D tungstoarsenate with mixed organic ligands assembled by hexa-Cu sandwiched Keggin units and dinuclear copper-oxalate complexes , 2011 .

[25]  W. Casey,et al.  Rates of water exchange for two cobalt(II) heteropolyoxotungstate compounds in aqueous solution. , 2011, Chemistry.

[26]  Jingping Wang,et al.  Three Transition-Metal Substituted Polyoxotungstates Containing Keggin Fragments: From Trimer to One-Dimensional Chain to Two-Dimensional Sheet , 2011 .

[27]  X. Fang,et al.  {Mn14W48} aggregate: the perspective of isopolyanions as ligands. , 2011, Chemical communications.

[28]  Scott G. Mitchell,et al.  Extended polyoxometalate framework solids: two Mn(II)-linked {P8W48} network arrays. , 2011, Inorganic chemistry.

[29]  Scott G. Mitchell,et al.  A dimeric polyoxometalate sandwich motif containing a truncated {Mn3O4} cubane core , 2010 .

[30]  N. Mizuno,et al.  Zinc(II) containing gamma-Keggin sandwich-type silicotungstate: synthesis in organic media and oxidation catalysis. , 2010, Angewandte Chemie.

[31]  Qiushi Yin,et al.  A Fast Soluble Carbon-Free Molecular Water Oxidation Catalyst Based on Abundant Metals , 2010, Science.

[32]  C. Hill,et al.  Switching slow relaxation in a Mn(III)(3)Mn(IV) cluster: an example of grafting single-molecule magnets onto polyoxometalates. , 2010, Chemical communications.

[33]  Scott G. Mitchell,et al.  Face-directed self-assembly of an electronically active Archimedean polyoxometalate architecture. , 2010, Nature chemistry.

[34]  Fengyan Li,et al.  New assembly of transition metal complexes based on [GeW9O34]10− building blocks: Syntheses, crystal structures and magnetic properties , 2010 .

[35]  Yang-guang Li,et al.  A {Cu6}-containing inorganic-metal-organic sandwich-type tungstoantimonite and its 3D supramolecular framework , 2009 .

[36]  Lixin Wu,et al.  Synthesis, characterization and crystal structure of a novel 2D network structure based on hexacopper(II) substituted tungstoantimonate , 2009 .

[37]  U. Kortz,et al.  Copper-, cobalt-, and manganese-containing 17-tungsto-2-germanates. , 2009, Inorganic chemistry.

[38]  Scott G. Mitchell,et al.  The trinity of polyoxometalates: connecting {M12} Keggin and {M18} Dawson clusters to triangles. , 2009, Chemical communications.

[39]  G. Christou,et al.  The Drosophila of single-molecule magnetism: [Mn12O12(O2CR)16(H2O)4]. , 2009, Chemical Society reviews.

[40]  Zhen Luo,et al.  Synthesis, structure and magnetism of a one-dimensional silicotungstate array : K3H4Cu0.5{Cu[Cu7.5Si2W16O60(H2O)4(OH)4]2} · 9H2O , 2009 .

[41]  Yang-guang Li,et al.  Mixed-valent {Mn14} aggregate encapsulated by the inorganic polyoxometalate shell: [Mn(III)13Mn(II)O12(PO4)4(PW9O34)4]31-. , 2009, Inorganic chemistry.

[42]  E. Wang,et al.  Two novel sandwiched-type polyoxotungstates containing Zn6 transition-metal cluster: Syntheses, structures and luminescent property , 2009 .

[43]  L. Cronin,et al.  Controlling nucleation of the cyclic heteropolyanion {P8W48}: a cobalt-substituted phosphotungstate chain and network , 2009 .

[44]  Leroy Cronin,et al.  Reversible redox reactions in an extended polyoxometalate framework solid. , 2008, Angewandte Chemie.

[45]  L. Cronin,et al.  Polyoxometalate-mediated self-assembly of single-molecule magnets: {[XW9O34]2[Mn(III)4Mn(II)2O4(H2O)4]}12-. , 2008, Angewandte Chemie.

[46]  L. Walder,et al.  6-Peroxo-6-zirconium crown and its hafnium analogue embedded in a triangular polyanion: [M6(O2)6(OH)6(gamma-SiW10O36)3]18- (M = Zr, Hf). , 2008, Journal of the American Chemical Society.

[47]  Gianfranco Scorrano,et al.  Polyoxometalate embedding of a tetraruthenium(IV)-oxo-core by template-directed metalation of [gamma-SiW10O36]8-: a totally inorganic oxygen-evolving catalyst. , 2008, Journal of the American Chemical Society.

[48]  S. Miron,et al.  Molecular interactions between Wells-Dawson type polyoxometalates and human serum albumin. , 2008, Biomacromolecules.

[49]  N. Dalal,et al.  Nucleation process in the cavity of a 48-tungstophosphate wheel resulting in a 16-metal-centre iron oxide nanocluster. , 2008, Chemistry.

[50]  Simon J. Herr,et al.  Single-molecule magnets: a new approach to investigate the electronic structure of Mn12 molecules by scanning tunneling spectroscopy. , 2007, Journal of the American Chemical Society.

[51]  N. Zamstein,et al.  Magnetic excitations in Cu6 and Mn6 hexagons embedded in D3d-symmetric polyoxotungstates. , 2007, Inorganic chemistry.

[52]  Xinlong Wang,et al.  Two multi-copper-containing heteropolyoxotungstates constructed from the lacunary Keggin polyoxoanion and the high-nuclear spin cluster. , 2007, Inorganic chemistry.

[53]  F. Hussain,et al.  Dititanium-containing 19-tungstodiarsenate(III) [Ti2(OH)2As2W19O67(H2O)]8-: synthesis, structure, electrochemistry, and oxidation catalysis. , 2007, Chemistry.

[54]  E. Wang,et al.  Reactions of trivacant lone-pair-containing tungstobismutate and electrochemical behaviors of its sandwich-type products , 2007 .

[55]  P. Mialane,et al.  Electrochemical generation of high-valent manganese catalysts in aqueous solutions from the sandwich-type polyoxoanion [(MnIII(H2O))3(SbW9O33)2]9− , 2007 .

[56]  T. Yamase,et al.  Ferromagnetic Exchange Interactions for Cu612+ and Mn612+ Hexagons Sandwiched by Two B-α-[XW9O33]9- (X = AsIII and SbIII) Ligands in D3d-Symmetric Polyoxotungstates , 2006 .

[57]  K. Morokuma,et al.  The true nature of the Di-iron(III) gamma-Keggin structure in water: catalytic aerobic oxidation and chemistry of an unsymmetrical trimer. , 2006, Journal of the American Chemical Society.

[58]  Tianbo Liu,et al.  Wheel-shaped polyoxotungstate [Cu20Cl(OH)24(H2O)12(P8W48O184)]25- macroanions form supramolecular "blackberry" structure in aqueous solution. , 2006, Journal of the American Chemical Society.

[59]  B. Krebs,et al.  The First Structurally Characterized Mn(III) Substituted Sandwich-type Polyoxotungstates , 2006 .

[60]  U. Kortz,et al.  The wheel-shaped Cu20 tungstophosphate [Cu20Cl(OH)24(H2O)12(P8W48O184)]25- ion. , 2005, Angewandte Chemie.

[61]  N. Dalal,et al.  The satellite-shaped Co-15 Polyoxotungstate, [Co6(H2O)30{Co9Cl2(OH)3(H2O)9(beta-SiW8O31)3}]5-. , 2005, Inorganic chemistry.

[62]  N. Dalal,et al.  Structure, electrochemistry, and magnetism of the iron(III)-substituted Keggin dimer, [Fe6(OH)3(A-alpha-GeW9O34(OH)3)2]11-. , 2005, Inorganic chemistry.

[63]  W. Wernsdorfer,et al.  Polycationic Mn12 single-molecule magnets as electron reservoirs with S > 10 ground states. , 2004, Angewandte Chemie.

[64]  R. Kruszyński,et al.  New bond-valence parameters for lanthanides. , 2004, Acta crystallographica. Section B, Structural science.

[65]  R. Sessoli,et al.  Quantum tunneling of magnetization and related phenomena in molecular materials. , 2003, Angewandte Chemie.

[66]  B. Krebs,et al.  Neue Heteropolyanionen des M2X2W20‐Typs mit Antimon(III) als Heteroatom , 2002 .

[67]  U. Kortz,et al.  Synthesis and Characterization of Copper-, Zinc-, Manganese-, and Cobalt-Substituted Dimeric Heteropolyanions, [(α-XW9O33)2M3(H2O)3]n- (n = 12, X = AsIII, SbIII, M = Cu2+, Zn2+; n = 10, X = SeIV, TeIV, M = Cu2+) and [(α-AsW9O33)2WO(H2O)M2(H2O)2]10- (M = Zn2+, Mn2+, Co2+)† , 2001 .

[68]  J. Marrot,et al.  Structural characterization and magnetic properties of sandwich-type tungstoarsenate complexes. Study of a mixed-valent VIV2/VV heteropolyanion. , 2001, Inorganic chemistry.

[69]  A. Caneschi,et al.  Magnetic bistability in a metal-ion cluster , 1993, Nature.

[70]  I. D. Brown,et al.  Bond‐valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database , 1985 .