Polymethylsilsesquioxane-cellulose nanofiber biocomposite aerogels with high thermal insulation, bendability, and superhydrophobicity.

Polymethylsilsesquioxane-cellulose nanofiber (PMSQ-CNF) composite aerogels have been prepared through sol-gel in a solvent containing a small amount of CNFs as suspension. Since these composite aerogels do not show excessive aggregation of PMSQ and CNF, the original PMSQ networks are not disturbed. Composite aerogels with low density (0.020 g cm(-3) at lowest), low thermal conductivity (15 mW m(-1) K(-1)), visible light translucency, bending flexibility, and superhydrophobicity thus have been successfully obtained. In particular, the lowest density and bending flexibility have been achieved with the aid of the physical supporting effect of CNFs, and the lowest thermal conductivity is comparable with the original PMSQ aerogels and standard silica aerogels. The PMSQ-CNF composite aerogels would be a candidate to practical high-performance thermal insulating materials.

[1]  N. Leventis,et al.  Cross-linking Amine-Modified Silica Aerogels with Epoxies: Mechanically Strong Lightweight Porous Materials , 2005 .

[2]  J. Brennan,et al.  Controlling the morphology of methylsilsesquioxane monoliths using a two-step processing method , 2006 .

[3]  T. Lindström,et al.  Aerogels from nanofibrillated cellulose with tunable oleophobicity , 2010 .

[4]  Olli Ikkala,et al.  Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities , 2008 .

[5]  H. Gesser,et al.  Aerogels and related porous materials , 1989 .

[6]  H. Yokogawa,et al.  Hydrophobic silica aerogels , 1995 .

[7]  R. Blossey Self-cleaning surfaces — virtual realities , 2003, Nature materials.

[8]  H. Yano,et al.  Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. , 2007, Biomacromolecules.

[9]  G. Reichenauer,et al.  Gas Pressure Dependence of the Heat Transport in Porous Solids with Pores Smaller than 10 μm , 2009 .

[10]  Robin H. A. Ras,et al.  Hydrophobic nanocellulose aerogels as floating, sustainable, reusable, and recyclable oil absorbents. , 2011, ACS applied materials & interfaces.

[11]  U. Schubert,et al.  Aerogels-Airy Materials: Chemistry, Structure, and Properties. , 1998, Angewandte Chemie.

[12]  Kazuki Nakanishi,et al.  A superamphiphobic macroporous silicone monolith with marshmallow-like flexibility. , 2013, Angewandte Chemie.

[13]  Jie Cai,et al.  Cellulose-silica nanocomposite aerogels by in situ formation of silica in cellulose gel. , 2012, Angewandte Chemie.

[14]  Kazuki Nakanishi,et al.  New Transparent Methylsilsesquioxane Aerogels and Xerogels with Improved Mechanical Properties , 2007 .

[15]  Kazuyoshi Kanamori,et al.  Organic–inorganic hybrid aerogels with high mechanical properties via organotrialkoxysilane-derived sol–gel process , 2011 .

[16]  Kazuki Nakanishi,et al.  Facile synthesis of marshmallow-like macroporous gels usable under harsh conditions for the separation of oil and water. , 2013, Angewandte Chemie.

[17]  N. Leventis Three-dimensional core-shell superstructures: mechanically strong aerogels. , 2007, Accounts of chemical research.

[18]  A. Potthast,et al.  Silica modified cellulosic aerogels , 2011 .

[19]  Hiroyuki Yano,et al.  Optically Transparent Composites Reinforced with Networks of Bacterial Nanofibers , 2005 .

[20]  K. Nakanishi,et al.  Sol-gel synthesis, porous structure, and mechanical property of polymethylsilsesquioxane aerogels , 2009 .

[21]  Hiroyuki Yano,et al.  Novel high-strength biocomposites based on microfibrillated cellulose having nano-order-unit web-like network structure , 2005 .

[22]  Masaya Nogi,et al.  Optically Transparent Nanofiber Paper , 2009 .

[23]  Alain C. Pierre,et al.  Chemistry of Aerogels and Their Applications , 2003 .

[24]  Kazuki Nakanishi,et al.  Structure and properties of polymethylsilsesquioxane aerogels synthesized with surfactant n-hexadecyltrimethylammonium chloride , 2012 .

[25]  Vollmann Seeligmann‐Zieke, Handbuch der Lack‐ und Firnißindustrie. III. Auflage. herausgegeben von E. Zieke und Dr. H. Wolff, mitbearbeitet von W. Schick und Dr. Zimmer. Berlin 1923. Union, Deutsche Verlagsgesellschaft. 827 Seiten , 1924 .

[26]  Hideyuki Kawai,et al.  Hydrophobic silica aerogel production at KEK , 2011, 1112.3121.

[27]  S. Kistler,et al.  Coherent Expanded Aerogels and Jellies. , 1931, Nature.

[28]  David Plackett,et al.  Microfibrillated cellulose and new nanocomposite materials: a review , 2010 .

[29]  K. Nakanishi,et al.  The thermal conductivity of polymethylsilsesquioxane aerogels and xerogels with varied pore sizes for practical application as thermal superinsulators , 2014 .

[30]  Masaya Nogi,et al.  Transparent Nanocomposites Based on Cellulose Produced by Bacteria Offer Potential Innovation in the Electronics Device Industry , 2008 .

[31]  R. Pekala,et al.  Thermal Conductivity of Monolithic Organic Aerogels , 1992, Science.

[32]  S. Jana,et al.  Tailoring mechanical properties of aerogels for aerospace applications. , 2011, ACS applied materials & interfaces.

[33]  Kazuki Nakanishi,et al.  New flexible aerogels and xerogels derived from methyltrimethoxysilane/dimethyldimethoxysilane co-precursors , 2011 .

[34]  K. Nakanishi,et al.  Elastic organic–inorganic hybrid aerogels and xerogels , 2008 .