Polymethylsilsesquioxane-cellulose nanofiber biocomposite aerogels with high thermal insulation, bendability, and superhydrophobicity.
暂无分享,去创建一个
Kentaro Abe | Kazuki Nakanishi | Hironori Kaji | Hiroyuki Yano | Kazuyoshi Kanamori | K. Nakanishi | H. Yano | K. Kanamori | K. Abe | A. Maeno | H. Kaji | Gen Hayase | Ayaka Maeno | G. Hayase
[1] N. Leventis,et al. Cross-linking Amine-Modified Silica Aerogels with Epoxies: Mechanically Strong Lightweight Porous Materials , 2005 .
[2] J. Brennan,et al. Controlling the morphology of methylsilsesquioxane monoliths using a two-step processing method , 2006 .
[3] T. Lindström,et al. Aerogels from nanofibrillated cellulose with tunable oleophobicity , 2010 .
[4] Olli Ikkala,et al. Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities , 2008 .
[5] H. Gesser,et al. Aerogels and related porous materials , 1989 .
[6] H. Yokogawa,et al. Hydrophobic silica aerogels , 1995 .
[7] R. Blossey. Self-cleaning surfaces — virtual realities , 2003, Nature materials.
[8] H. Yano,et al. Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. , 2007, Biomacromolecules.
[9] G. Reichenauer,et al. Gas Pressure Dependence of the Heat Transport in Porous Solids with Pores Smaller than 10 μm , 2009 .
[10] Robin H. A. Ras,et al. Hydrophobic nanocellulose aerogels as floating, sustainable, reusable, and recyclable oil absorbents. , 2011, ACS applied materials & interfaces.
[11] U. Schubert,et al. Aerogels-Airy Materials: Chemistry, Structure, and Properties. , 1998, Angewandte Chemie.
[12] Kazuki Nakanishi,et al. A superamphiphobic macroporous silicone monolith with marshmallow-like flexibility. , 2013, Angewandte Chemie.
[13] Jie Cai,et al. Cellulose-silica nanocomposite aerogels by in situ formation of silica in cellulose gel. , 2012, Angewandte Chemie.
[14] Kazuki Nakanishi,et al. New Transparent Methylsilsesquioxane Aerogels and Xerogels with Improved Mechanical Properties , 2007 .
[15] Kazuyoshi Kanamori,et al. Organic–inorganic hybrid aerogels with high mechanical properties via organotrialkoxysilane-derived sol–gel process , 2011 .
[16] Kazuki Nakanishi,et al. Facile synthesis of marshmallow-like macroporous gels usable under harsh conditions for the separation of oil and water. , 2013, Angewandte Chemie.
[17] N. Leventis. Three-dimensional core-shell superstructures: mechanically strong aerogels. , 2007, Accounts of chemical research.
[18] A. Potthast,et al. Silica modified cellulosic aerogels , 2011 .
[19] Hiroyuki Yano,et al. Optically Transparent Composites Reinforced with Networks of Bacterial Nanofibers , 2005 .
[20] K. Nakanishi,et al. Sol-gel synthesis, porous structure, and mechanical property of polymethylsilsesquioxane aerogels , 2009 .
[21] Hiroyuki Yano,et al. Novel high-strength biocomposites based on microfibrillated cellulose having nano-order-unit web-like network structure , 2005 .
[22] Masaya Nogi,et al. Optically Transparent Nanofiber Paper , 2009 .
[23] Alain C. Pierre,et al. Chemistry of Aerogels and Their Applications , 2003 .
[24] Kazuki Nakanishi,et al. Structure and properties of polymethylsilsesquioxane aerogels synthesized with surfactant n-hexadecyltrimethylammonium chloride , 2012 .
[25] Vollmann. Seeligmann‐Zieke, Handbuch der Lack‐ und Firnißindustrie. III. Auflage. herausgegeben von E. Zieke und Dr. H. Wolff, mitbearbeitet von W. Schick und Dr. Zimmer. Berlin 1923. Union, Deutsche Verlagsgesellschaft. 827 Seiten , 1924 .
[26] Hideyuki Kawai,et al. Hydrophobic silica aerogel production at KEK , 2011, 1112.3121.
[27] S. Kistler,et al. Coherent Expanded Aerogels and Jellies. , 1931, Nature.
[28] David Plackett,et al. Microfibrillated cellulose and new nanocomposite materials: a review , 2010 .
[29] K. Nakanishi,et al. The thermal conductivity of polymethylsilsesquioxane aerogels and xerogels with varied pore sizes for practical application as thermal superinsulators , 2014 .
[30] Masaya Nogi,et al. Transparent Nanocomposites Based on Cellulose Produced by Bacteria Offer Potential Innovation in the Electronics Device Industry , 2008 .
[31] R. Pekala,et al. Thermal Conductivity of Monolithic Organic Aerogels , 1992, Science.
[32] S. Jana,et al. Tailoring mechanical properties of aerogels for aerospace applications. , 2011, ACS applied materials & interfaces.
[33] Kazuki Nakanishi,et al. New flexible aerogels and xerogels derived from methyltrimethoxysilane/dimethyldimethoxysilane co-precursors , 2011 .
[34] K. Nakanishi,et al. Elastic organic–inorganic hybrid aerogels and xerogels , 2008 .