Generalized spline wavelets

A generalized multiresolution of multiplicityr, generated byr linearly independent spline functions with multiple knots, is introduced. With the help of the autocorrelation symbol and the two-scale symbol of the scaling functions, spline wavelets with multiple knots can be completely characterized. New decomposition and reconstruction algorithms, based on the Fourier technique, are presented.

[1]  I. J. Schoenberg,et al.  Cardinal interpolation and spline functions. III. Cardinal Hermite interpolation , 1973 .

[2]  Carl de Boor,et al.  On Local Linear Functionals which Vanish at all B-Splines but One. , 1975 .

[3]  G. Battle A block spin construction of ondelettes. Part I: Lemarié functions , 1987 .

[4]  P. G. Lemari'e,et al.  Ondelettes `a localisation exponentielle , 1988 .

[5]  S. Mallat Multiresolution approximations and wavelet orthonormal bases of L^2(R) , 1989 .

[6]  Carl de Boor The exact condition of the B-spline basis may be hard to determine , 1990 .

[7]  Charles A. Micchelli,et al.  Using the Refinement Equations for the Construction of Pre-Wavelets II: Powers of Two , 1991, Curves and Surfaces.

[8]  R. DeVore,et al.  The Structure of Finitely Generated Shift-Invariant Spaces in , 1992 .

[9]  C. Chui,et al.  On compactly supported spline wavelets and a duality principle , 1992 .

[10]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[11]  T. Lyche,et al.  Spline-Wavelets of Minimal Support , 1992 .

[12]  C. Chui,et al.  A general framework of compactly supported splines and wavelets , 1992 .

[13]  Ronald A. DeVore,et al.  The Structure of Nitely Generated Shift-invariant Spaces in L 2 (ir D ) , 1992 .

[14]  R. DeVore,et al.  On the construction of multivariate (pre)wavelets , 1993 .

[15]  Ondelettes generalisées et fonctions d'échelle à support compact , 1993 .

[16]  S. L. Lee,et al.  Wavelets in wandering subspaces , 1993 .

[17]  B. Alpert A class of bases in L 2 for the sparse representations of integral operators , 1993 .

[18]  Gerlind Plonka Spline wavelets with higher defect , 1994 .

[19]  Cardinal Hermite spline interpolation with shifted nodes , 1994 .

[20]  L. Hervé Multi-Resolution Analysis of Multiplicity d: Applications to Dyadic Interpolation , 1994 .

[21]  S. L. Lee,et al.  WAVELETS OF MULTIPLICITY r , 1994 .

[22]  T. Goodman Interpolatory Hermite Spline Wavelets , 1994 .

[23]  Amara Lynn Graps,et al.  An introduction to wavelets , 1995 .

[24]  Gerlind Plonka-Hoch Two-scale symbol and autocorrelation symbol for B-splines with multiple knots , 1995, Adv. Comput. Math..

[25]  Gerlind Plonka,et al.  Two-scale symbol and autocorrelation symbol for B-splines with multiple knots , 1995 .

[26]  Manfred Tasche,et al.  On the Computation of Periodic Spline Wavelets , 1995 .