Convex Inequalities Without Constraint Qualification nor Closedness Condition, and Their Applications in Optimization
暂无分享,去创建一个
M. Volle | N. Dinh | M. Goberna | M. Volle | N. Dinh | M. A. Goberna | M. A. López | M. López | M. López
[1] Nguyen Dinh,et al. Dual Characterizations of Set Containments with Strict Convex Inequalities , 2006, J. Glob. Optim..
[2] R. Temam,et al. Analyse convexe et problèmes variationnels , 1974 .
[3] Sorin-Mihai Grad,et al. Generalized Moreau–Rockafellar results for composed convex functions , 2009 .
[4] Vaithilingam Jeyakumar,et al. New Sequential Lagrange Multiplier Conditions Characterizing Optimality without Constraint Qualification for Convex Programs , 2003, SIAM J. Optim..
[5] C. Zălinescu. Convex analysis in general vector spaces , 2002 .
[6] R. Phelps,et al. Subdifferential Calculus Using ϵ-Subdifferentials , 1993 .
[7] M. A. López-Cerdá,et al. Linear Semi-Infinite Optimization , 1998 .
[8] Lionel Thibault,et al. A Generalized Sequential Formula for Subdifferentials of Sums of Convex Functions Defined on Banach Spaces , 1995 .
[9] V. Jeyakumar,et al. Characterizing Set Containments Involving Infinite Convex Constraints and Reverse-Convex Constraints , 2002, SIAM J. Optim..
[10] Vaithilingam Jeyakumar,et al. Inequality systems and global optimization , 1996 .
[11] J. Penot,et al. Semi-continuous mappings in general topology , 1982 .
[12] Vaithilingam Jeyakumar,et al. Sequential Lagrangian Conditions for Convex Programs with Applications to Semidefinite Programming , 2005 .
[13] E. Anderson. Linear Programming In Infinite Dimensional Spaces , 1970 .
[14] Radu Ioan Bot,et al. Some new Farkas-type results for inequality systems with DC functions , 2007, J. Glob. Optim..
[15] J. Toland. Duality in nonconvex optimization , 1978 .
[16] Stephen P. Boyd,et al. Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.
[17] Arkadi Nemirovski,et al. Lectures on modern convex optimization - analysis, algorithms, and engineering applications , 2001, MPS-SIAM series on optimization.
[18] V. Jeyakumar,et al. Farkas Lemma: Generalizations , 2009, Encyclopedia of Optimization.
[19] Christian Michelot,et al. Recent Developments in Optimization , 1995 .
[20] Marco A. López,et al. A Comprehensive Survey of Linear Semi-Infinite Optimization Theory , 1998 .
[21] P. Hansen,et al. Essays and surveys in global optimization , 2005 .
[22] Alberto Seeger,et al. Subdifferential calculus without qualification conditions, using approximate subdifferentials: a survey , 1995 .
[23] Elijah Polak,et al. Semi-Infinite Optimization , 1997 .
[24] Vaithilingam Jeyakumar,et al. Characterizing global optimality for DC optimization problems under convex inequality constraints , 1996, J. Glob. Optim..
[25] T. T. A. Nghia,et al. Farkas-type results and duality for DC programs with convex constraints , 2007 .
[26] Jean-Paul Penot,et al. Unilateral Analysis and Duality , 2005 .
[27] Marco A. López,et al. Extended Active Constraints in Linear Optimization with Applications , 2003, SIAM J. Optim..
[28] Lionel Thibault,et al. Sequential Convex Subdifferential Calculus and Sequential Lagrange Multipliers , 1997 .
[29] Zhi-You Wu,et al. Liberating the Subgradient Optimality Conditions from Constraint Qualifications , 2006, J. Glob. Optim..
[30] Radu Ioan Bot,et al. Farkas-Type Results With Conjugate Functions , 2005, SIAM J. Optim..