Convex Inequalities Without Constraint Qualification nor Closedness Condition, and Their Applications in Optimization

AbstractGiven two convex lower semicontinuous extended real valued functions F and h defined on locally convex spaces, we provide a dual transcription of the relation ⋆$$ F\left( 0,\cdot \right) \geq h\left( \cdot \right) . $$Some results in this direction are obtained in the first part of the paper (Lemma 2, Theorem 1). These results then are applied to the case when the left-hand-side in (⋆) is the sum of two convex functions with a convex composite one (Theorem 2). In the spirit of previous works (Hiriart-Urruty and Phelps, J Funct Anal 118:154–166, 1993; Penot, J Convex Anal 3:207–219, 1996, 2005; Thibault, 1995, SIAM J Control Optim 35:1434–1444, 1997, etc.) we give in Theorem 3 a formula for the subdifferential of such a function without any qualification condition. As a consequence of that, we extend to the nonreflexive setting a recent result (Jeyakumar et al., J Glob Optim 36:127–137 2006, Theorem 3.2) about subgradient optimality conditions without constraint qualifications. Finally, we apply Theorem 2 to obtain Farkas-type lemmas and new results on DC, convex, semi-definite, and linear optimization problems.

[1]  Nguyen Dinh,et al.  Dual Characterizations of Set Containments with Strict Convex Inequalities , 2006, J. Glob. Optim..

[2]  R. Temam,et al.  Analyse convexe et problèmes variationnels , 1974 .

[3]  Sorin-Mihai Grad,et al.  Generalized Moreau–Rockafellar results for composed convex functions , 2009 .

[4]  Vaithilingam Jeyakumar,et al.  New Sequential Lagrange Multiplier Conditions Characterizing Optimality without Constraint Qualification for Convex Programs , 2003, SIAM J. Optim..

[5]  C. Zălinescu Convex analysis in general vector spaces , 2002 .

[6]  R. Phelps,et al.  Subdifferential Calculus Using ϵ-Subdifferentials , 1993 .

[7]  M. A. López-Cerdá,et al.  Linear Semi-Infinite Optimization , 1998 .

[8]  Lionel Thibault,et al.  A Generalized Sequential Formula for Subdifferentials of Sums of Convex Functions Defined on Banach Spaces , 1995 .

[9]  V. Jeyakumar,et al.  Characterizing Set Containments Involving Infinite Convex Constraints and Reverse-Convex Constraints , 2002, SIAM J. Optim..

[10]  Vaithilingam Jeyakumar,et al.  Inequality systems and global optimization , 1996 .

[11]  J. Penot,et al.  Semi-continuous mappings in general topology , 1982 .

[12]  Vaithilingam Jeyakumar,et al.  Sequential Lagrangian Conditions for Convex Programs with Applications to Semidefinite Programming , 2005 .

[13]  E. Anderson Linear Programming In Infinite Dimensional Spaces , 1970 .

[14]  Radu Ioan Bot,et al.  Some new Farkas-type results for inequality systems with DC functions , 2007, J. Glob. Optim..

[15]  J. Toland Duality in nonconvex optimization , 1978 .

[16]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[17]  Arkadi Nemirovski,et al.  Lectures on modern convex optimization - analysis, algorithms, and engineering applications , 2001, MPS-SIAM series on optimization.

[18]  V. Jeyakumar,et al.  Farkas Lemma: Generalizations , 2009, Encyclopedia of Optimization.

[19]  Christian Michelot,et al.  Recent Developments in Optimization , 1995 .

[20]  Marco A. López,et al.  A Comprehensive Survey of Linear Semi-Infinite Optimization Theory , 1998 .

[21]  P. Hansen,et al.  Essays and surveys in global optimization , 2005 .

[22]  Alberto Seeger,et al.  Subdifferential calculus without qualification conditions, using approximate subdifferentials: a survey , 1995 .

[23]  Elijah Polak,et al.  Semi-Infinite Optimization , 1997 .

[24]  Vaithilingam Jeyakumar,et al.  Characterizing global optimality for DC optimization problems under convex inequality constraints , 1996, J. Glob. Optim..

[25]  T. T. A. Nghia,et al.  Farkas-type results and duality for DC programs with convex constraints , 2007 .

[26]  Jean-Paul Penot,et al.  Unilateral Analysis and Duality , 2005 .

[27]  Marco A. López,et al.  Extended Active Constraints in Linear Optimization with Applications , 2003, SIAM J. Optim..

[28]  Lionel Thibault,et al.  Sequential Convex Subdifferential Calculus and Sequential Lagrange Multipliers , 1997 .

[29]  Zhi-You Wu,et al.  Liberating the Subgradient Optimality Conditions from Constraint Qualifications , 2006, J. Glob. Optim..

[30]  Radu Ioan Bot,et al.  Farkas-Type Results With Conjugate Functions , 2005, SIAM J. Optim..