On the error estimate of the randomized double block Kaczmarz method

Abstract In this paper, we consider the convergence analysis of the randomized double block Kaczmarz method and improve the upper bound of the error estimate in expectation of the randomized double block Kaczmarz method. Numerical experiments are given to demonstrate the theoretical results and to show a large gap between the new and the old bound.

[1]  Deanna Needell,et al.  Paved with Good Intentions: Analysis of a Randomized Block Kaczmarz Method , 2012, ArXiv.

[2]  Zhong-Zhi Bai,et al.  On greedy randomized coordinate descent methods for solving large linear least-squares problems , 2019, Numer. Linear Algebra Appl..

[3]  Nikolaos M. Freris,et al.  Randomized Extended Kaczmarz for Solving Least Squares , 2012, SIAM J. Matrix Anal. Appl..

[4]  D. Needell,et al.  Randomized block Kaczmarz method with projection for solving least squares , 2014, 1403.4192.

[5]  T. Elfving Block-iterative methods for consistent and inconsistent linear equations , 1980 .

[6]  Yair Censor,et al.  Parallel application of block-iterative methods in medical imaging and radiation therapy , 1988, Math. Program..

[7]  Avinash C. Kak,et al.  Principles of computerized tomographic imaging , 2001, Classics in applied mathematics.

[8]  G. Herman,et al.  Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and x-ray photography. , 1970, Journal of theoretical biology.

[9]  Zhong-Zhi Bai,et al.  On convergence rate of the randomized Kaczmarz method , 2018, Linear Algebra and its Applications.

[10]  Rafal Zdunek,et al.  Kaczmarz extended algorithm for tomographic image reconstruction from limited-data , 2004, Math. Comput. Simul..

[11]  Y. Censor Row-Action Methods for Huge and Sparse Systems and Their Applications , 1981 .

[12]  C. Byrne,et al.  A unified treatment of some iterative algorithms in signal processing and image reconstruction , 2003 .

[13]  A. Lent,et al.  Iterative algorithms for large partitioned linear systems, with applications to image reconstruction , 1981 .

[14]  Zhong-Zhi Bai,et al.  On Greedy Randomized Kaczmarz Method for Solving Large Sparse Linear Systems , 2018, SIAM J. Sci. Comput..

[15]  Zhong-Zhi Bai,et al.  On the Meany inequality with applications to convergence analysis of several row-action iteration methods , 2013, Numerische Mathematik.

[16]  Nikolaos V. Sahinidis,et al.  GPU computing with Kaczmarz's and other iterative algorithms for linear systems , 2010, Parallel Comput..

[17]  Deanna Needell,et al.  Convergence Properties of the Randomized Extended Gauss-Seidel and Kaczmarz Methods , 2015, SIAM J. Matrix Anal. Appl..

[18]  D. Needell Randomized Kaczmarz solver for noisy linear systems , 2009, 0902.0958.

[19]  Ruggero Carli,et al.  Distributed estimation via iterative projections with application to power network monitoring , 2011, Autom..

[20]  Adrian S. Lewis,et al.  Randomized Methods for Linear Constraints: Convergence Rates and Conditioning , 2008, Math. Oper. Res..

[21]  Gabor T. Herman,et al.  Algebraic reconstruction techniques can be made computationally efficient [positron emission tomography application] , 1993, IEEE Trans. Medical Imaging.

[22]  Zhong-Zhi Bai,et al.  On relaxed greedy randomized Kaczmarz methods for solving large sparse linear systems , 2018, Appl. Math. Lett..

[23]  D. Needell,et al.  Two-Subspace Projection Method for Coherent Overdetermined Systems , 2012, 1204.0279.

[24]  Stefania Petra,et al.  Single projection Kaczmarz extended algorithms , 2015, Numerical Algorithms.

[25]  Timothy A. Davis,et al.  The university of Florida sparse matrix collection , 2011, TOMS.

[26]  Z. Bai,et al.  On partially randomized extended Kaczmarz method for solving large sparse overdetermined inconsistent linear systems , 2019, Linear Algebra and its Applications.

[27]  G. Hounsfield Computerized transverse axial scanning (tomography): Part I. Description of system. 1973. , 1973, The British journal of radiology.

[28]  Constantin Popa Convergence rates for Kaczmarz-type algorithms , 2017, Numerical Algorithms.

[29]  R. Vershynin,et al.  A Randomized Kaczmarz Algorithm with Exponential Convergence , 2007, math/0702226.