CHARACTERIZING QUANTUMNESS VIA ENTANGLEMENT CREATION

In [Piani et al., PRL106 (2011) 220403], an activation protocol was introduced which maps the general non-classical (multipartite) correlations between given systems into bipartite entanglement between the systems and local ancillae by means of a potentially highly entangling interaction. Here, we study how this activation protocol can be used to entangle the starting systems themselves via entanglement swapping through a measurement on the ancillae. Furthermore, we bound the relative entropy of quantumness (a naturally arising measure of non-classicality in the scheme of Piani et al. above) for a special class of separable states, the so-called classical–quantum states. In particular, we fully characterize the classical–quantum two-qubit states that are maximally non-classical.

[1]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[2]  M. Plenio,et al.  Quantifying Entanglement , 1997, quant-ph/9702027.

[3]  Maassen,et al.  Generalized entropic uncertainty relations. , 1988, Physical review letters.

[4]  Gerardo Adesso,et al.  All nonclassical correlations can be activated into distillable entanglement. , 2011, Physical review letters.

[5]  M Christandl,et al.  Broadcast copies reveal the quantumness of correlations. , 2009, Physical review letters.

[6]  M. Paris,et al.  Gaussian quantum discord. , 2010, Physical review letters.

[7]  Hermann Kampermann,et al.  Linking quantum discord to entanglement in a measurement. , 2010, Physical review letters.

[8]  A. Acín,et al.  Almost all quantum states have nonclassical correlations , 2009, 0908.3157.

[9]  Ekert,et al.  "Event-ready-detectors" Bell experiment via entanglement swapping. , 1993, Physical review letters.

[10]  R. Rossignoli,et al.  Generalized entropic measures of quantum correlations , 2010, 1104.5678.

[11]  Eric M. Rains A semidefinite program for distillable entanglement , 2001, IEEE Trans. Inf. Theory.

[12]  Animesh Datta,et al.  Quantum discord and the power of one qubit. , 2007, Physical review letters.

[13]  Tal Mor,et al.  "Quantumness" versus "Classicality" of Quantum States , 2007 .

[14]  Pérès Separability Criterion for Density Matrices. , 1996, Physical review letters.

[15]  V. Vedral,et al.  Classical, quantum and total correlations , 2001, quant-ph/0105028.

[16]  L. Gurvits,et al.  Largest separable balls around the maximally mixed bipartite quantum state , 2002, quant-ph/0204159.

[17]  S. Luo Using measurement-induced disturbance to characterize correlations as classical or quantum , 2008 .

[18]  M. Horodecki,et al.  Local versus nonlocal information in quantum-information theory: Formalism and phenomena , 2004, quant-ph/0410090.

[19]  A. Winter,et al.  Quantum, classical, and total amount of correlations in a quantum state , 2004, quant-ph/0410091.

[20]  Sergei Bravyi Entanglement entropy of multipartite pure states , 2003 .

[21]  V. Vedral,et al.  Entanglement measures and purification procedures , 1997, quant-ph/9707035.

[22]  P. Horodecki,et al.  No-local-broadcasting theorem for multipartite quantum correlations. , 2007, Physical review letters.

[23]  Mikio Nakahara,et al.  Nonclassical correlation in a multipartite quantum system : Two measures and evaluation , 2008 .

[24]  W. Zurek,et al.  Quantum discord: a measure of the quantumness of correlations. , 2001, Physical review letters.

[25]  M. Hayashi,et al.  Finding a maximally correlated state: Simultaneous Schmidt decomposition of bipartite pure states , 2004, quant-ph/0405107.

[26]  T. Paterek,et al.  Unified view of quantum and classical correlations. , 2009, Physical review letters.

[27]  M. Lewenstein,et al.  Volume of the set of separable states , 1998, quant-ph/9804024.

[28]  E. Knill,et al.  Power of One Bit of Quantum Information , 1998, quant-ph/9802037.

[29]  A. Datta,et al.  Quantum versus classical correlations in Gaussian states. , 2010, Physical review letters.

[30]  M. Horodecki,et al.  Locking classical correlations in quantum States. , 2003, Physical review letters.

[31]  Martin B. Plenio,et al.  An introduction to entanglement measures , 2005, Quantum Inf. Comput..