Control variates for quantile estimation

Some new quantile estimators that employ a control variate are introduced. The properties of these estimators do not depend on the usual assumption of joint normality between the random variable of interest and the control. Empirical results are presented.

[1]  E. L. Lehmann,et al.  Theory of point estimation , 1950 .

[2]  Averill M. Law,et al.  The Transient Behavior of the M/M/s Queue, with Implications for Steady-State Simulation , 1985, Oper. Res..

[3]  B. Nelson,et al.  A perspective on variance reduction in dynamic simulation experiments , 1987 .

[4]  Y. Tong Probability Inequalities in Multivariate Distributions , 1980 .

[5]  Ward Whitt,et al.  Indirect Estimation Via L = λW , 1989, Oper. Res..

[6]  Paul Bratley,et al.  A guide to simulation , 1983 .

[7]  Michael A. Stephens,et al.  On the Accuracy of Simulated Percentage Points , 1983 .

[8]  Allan R. Wilks,et al.  The new S language: a programming environment for data analysis and graphics , 1988 .

[9]  J. Hammersley,et al.  Monte Carlo Methods , 1965 .

[10]  R. F. Kappenman Improved distribution quantile estimation , 1987 .

[11]  Frank E. Harrell,et al.  A new distribution-free quantile estimator , 1982 .

[12]  H. A. David,et al.  Order Statistics (2nd ed). , 1981 .

[13]  Barry L. Nelson,et al.  On control variate estimators , 1987, Comput. Oper. Res..

[14]  P. Rothery,et al.  The Use of Control Variates in Monte Carlo Estimation of Power , 1982 .

[15]  Bruce W. Schmeiser,et al.  Bivariate Gamma Random Vectors , 1982, Oper. Res..

[16]  A. F. Seila,et al.  A Batching Approach to Quantile Estimation in Regenerative Simulations , 1982 .

[17]  Paul Bratley,et al.  A guide to simulation (2nd ed.) , 1986 .

[18]  Peter J. Bickel,et al.  S: An Interactive Environment for Data Analysis and Graphics , 1984 .

[19]  Linus Schrage,et al.  A guide to simulation, 2nd Edition , 1987 .