Detection of attraction domains of non-linear systems using bifurcation analysis and Lyapunov functions
暂无分享,去创建一个
[1] Katsuhisa Furuta,et al. Swinging up a pendulum by energy control , 1996, Autom..
[2] P. Julián,et al. A parametrization of piecewise linear Lyapunov functions via linear programming , 1999 .
[3] A. Vicino,et al. On the estimation of asymptotic stability regions: State of the art and new proposals , 1985 .
[4] F. Blanchini,et al. Constrained stabilization via smooth Lyapunov functions , 1998 .
[5] Karl Johan Åström,et al. Global Bifurcations in the Futura Pendulum , 1998 .
[6] Alexander L. Fradkov. Swinging control of nonlinear oscillations , 1996 .
[7] Felix F. Wu,et al. Stability regions of nonlinear autonomous dynamical systems , 1988 .
[8] Jesus Alvarez,et al. Linear systems with single saturated input: stability analysis , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.
[9] Dirk Aeyels,et al. On exponential stability of nonlinear time-varying differential equations , 1999, Autom..
[10] B. R. Andrievskii,et al. CONTROL OF NONLINEAR VIBRATIONS OF MECHANICAL SYSTEMS VIA THE METHOD OF VELOCITY GRADIENT , 1996 .
[11] Sophie Tarbouriech,et al. Stability regions for linear systems with saturating controls , 1999, 1999 European Control Conference (ECC).
[12] S. Tarbouriech,et al. Admissible polyhedra for discrete-time linear systems with saturating controls , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).
[13] Javier Aracil,et al. Local bifurcation Analysis in the Furuta Pendulum via Normal Forms , 2000, Int. J. Bifurc. Chaos.
[14] Y. Kuznetsov. Elements of Applied Bifurcation Theory , 2023, Applied Mathematical Sciences.