Empirical van der Waals corrections to solid‐state density functional theory: Iodine and phosphorous containing molecular crystals

Parameters are derived for a molecular mechanics type dispersive correction to solid‐state density functional theory calculations on molecular crystals containing iodine and phosphorous. The molecular C6 coefficients are derived from photoabsorption differential oscillator strength spectra determined from accurate (e,e) dipole spectra. The cross‐over parameters, which ensure correct behavior at short internuclear distances, are obtained by fitting predicted crystal lattice parameters to experimental data. The accuracy of the parameterization is assessed by optimizing the experimental structures of several additional phosphorous and iodine containing molecular crystals and by examining the relative stabilities of the known polymorphs of phosphorous pentoxide and the stabilities of different packings of an iodine containing molecular crystal, 2,9‐bis(iodo)anthanthrone, which has been the subject of a crystal structure prediction study. Optimizations of the experimental crystal structures did not lead to significant geometric deviations. The optimized experimental structure of 2,9‐bis(iodo)anthanthrone is the lowest energy packing found, indicating a satisfactory description of both energy and structure for these molecular crystals. © 2012 Wiley Periodicals, Inc.

[1]  Thomas A. Halgren,et al.  The representation of van der Waals (vdW) interactions in molecular mechanics force fields: potential form, combination rules, and vdW parameters , 1992 .

[2]  S. Hendricks,et al.  Polymorphism of Phosphoric Oxide , 1943 .

[3]  F. Leusen,et al.  Revisiting the blind tests in crystal structure prediction: accurate energy ranking of molecular crystals. , 2009, The journal of physical chemistry. B.

[4]  P Verwer,et al.  A test of crystal structure prediction of small organic molecules. , 2000, Acta crystallographica. Section B, Structural science.

[5]  Sarah L Price,et al.  Crystal structure prediction of small organic molecules: a second blind test. , 2002, Acta crystallographica. Section B, Structural science.

[6]  C. Krüger,et al.  Trimethylphosphine and Triethylphosphine in the Solid State , 1995 .

[7]  Qin Wu,et al.  Empirical correction to density functional theory for van der Waals interactions , 2002 .

[8]  C. E. Brion,et al.  Valence shell absolute photoabsorption oscillator strengths, constrained dipole oscillator strength distributions, and dipole properties for CH3NH2, (CH3)2NH, and (CH3)3N , 1994 .

[9]  I. Novák 1,2,4-Triiodobenzene , 2007 .

[10]  Stefan Grimme,et al.  Accurate description of van der Waals complexes by density functional theory including empirical corrections , 2004, J. Comput. Chem..

[11]  Tejender S. Thakur,et al.  Significant progress in predicting the crystal structures of small organic molecules--a report on the fourth blind test. , 2009, Acta crystallographica. Section B, Structural science.

[12]  H. Arnold Crystal structure of FePO4at 294 and 20 K , 1986 .

[13]  Ashok Kumar,et al.  Isotropic dipole properties for acetone, acetaldehyde and formaldehyde , 1997 .

[14]  G. Kresse,et al.  Ab initio molecular dynamics for liquid metals. , 1993 .

[15]  O. Moze,et al.  High resolution neutron powder diffraction studies of the low temperature crystal structure of molecular iodine (I2) , 1992 .

[16]  Ashok Kumar,et al.  Pseudo-spectral dipole oscillator strengths and dipole-dipole and triple-dipole dispersion energy coefficients for HF, HCl, HBr, He, Ne, Ar, Kr and Xe , 1985 .

[17]  F. Allen The Cambridge Structural Database: a quarter of a million crystal structures and rising. , 2002, Acta crystallographica. Section B, Structural science.

[18]  F. Leusen,et al.  Progress in crystal structure prediction. , 2011, Chemistry.

[19]  S. H. Vosko,et al.  Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis , 1980 .

[20]  R. Ibberson,et al.  Temperature-dependent crystal structure analysis of methyl iodide by high-resolution neutron powder diffraction , 2007 .

[21]  Ashok Kumar,et al.  Dipole oscillator strength distributions and properties for SO2, CS2, and OCS' , 1985 .

[22]  C. Krüger,et al.  Systematic Structural Investigations on Phosphines , 1995 .

[23]  T. C. Lewis,et al.  A third blind test of crystal structure prediction. , 2005, Acta crystallographica. Section B, Structural science.

[24]  P. Luksch,et al.  New developments in the Inorganic Crystal Structure Database (ICSD): accessibility in support of materials research and design. , 2002, Acta crystallographica. Section B, Structural science.

[25]  Marc-Antoine Perrin,et al.  Energy ranking of molecular crystals using density functional theory calculations and an empirical van der waals correction. , 2005, The journal of physical chemistry. B.

[26]  William J. Meath,et al.  Dipole oscillator strength properties and dispersion energies for acetylene and benzene , 1992 .

[27]  Ashok Kumar,et al.  RELIABLE ISOTROPIC AND ANISOTROPIC DIPOLE PROPERTIES, AND DIPOLAR DISPERSION ENERGY COEFFICIENTS, FOR CO EVALUATED USING CONSTRAINED DIPOLE OSCILLATOR STRENGTH TECHNIQUES , 1994 .

[28]  K. K. Hii,et al.  Practical synthesis of chiral vinylphosphine oxides by direct nucleophilic substitution. Stereodivergent synthesis of aminophosphine ligands. , 2006, The Journal of organic chemistry.

[29]  F. Leusen,et al.  A major advance in crystal structure prediction. , 2008, Angewandte Chemie.

[30]  Jan Kroon,et al.  TRANSFERABLE AB INITIO INTERMOLECULAR POTENTIALS. 2. VALIDATION AND APPLICATION TO CRYSTAL STRUCTURE PREDICTION , 1999 .

[31]  N. D. de Leeuw,et al.  A density functional theory study of structural, mechanical and electronic properties of crystalline phosphorus pentoxide. , 2011, The Journal of chemical physics.

[32]  Ashok Kumar,et al.  Dipole properties, dispersion energy coefficients, and integrated oscillator strengths for SF6 , 1985 .

[33]  W. J. Meath,et al.  Pseudo-spectral dipole oscillator strength distributions for the normal alkanes through octane and the evaluation of some related dipole-dipole and triple-dipole dispersion interaction energy coefficients , 1980 .

[34]  Bouke P. van Eijck,et al.  Transferable ab Initio Intermolecular Potentials. 1. Derivation from Methanol Dimer and Trimer Calculations , 1999 .

[35]  W. J. Meath,et al.  Dipole oscillator strength distributions, sums, and dispersion energy coefficients for CO and CO2☆ , 1982 .

[36]  K. Merz Substitution Effect on Crystal Packings of Iodobenzonitriles and Iodophenols , 2006 .

[37]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[38]  B. M. Powell,et al.  Crystal structures of methylene bromide and methylene iodide , 1989 .

[39]  M. Wiebcke,et al.  Fluorides and fluoro acids. XIII. The crystal structure of phosphorus pentafluoride , 1987 .

[40]  Ashok Kumar,et al.  Dipole oscillator strength properties and dispersion energies for CI2 , 2002 .

[41]  F. Leusen,et al.  Molecule VI, a benchmark crystal-structure-prediction sulfonimide: are its polymorphs predictable? , 2011, Angewandte Chemie.

[42]  F. Leusen,et al.  Crystal structure prediction and isostructurality of three small organic halogen compounds. , 2010, Physical chemistry chemical physics : PCCP.

[43]  J. Darriet,et al.  New refinement of the crystal structure of o-P2O5 , 1996 .

[44]  H. Fuess,,et al.  Phosphorus Pentoxide at 233 K , 1995 .

[45]  J. Bats,et al.  1,3,5‐Triiodo­benzene , 2006 .

[46]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[47]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[48]  Natalie M. Cann,et al.  Absolute scale determination for photoabsorption spectra and the calculation of molecular properties using dipole sum-rules , 1997 .