Unconditionally Secure Control and Diagnostic Systems

This paper presents an information-theoretically (unconditionally) secure approach to enhancing security of control and diagnostic applications. Unconditional (information-theoretic) security means that an attacker, even with infinite computational power, still cannot decrypt the data. Currently, only quantum key distribution (QKD) and the Kirchhoff-law-Johnson-noise (KLJN) schemes can offer unconditional security for the secure key generation/exchange, which is the difficult part to reach information-theoretic security. The key idea of this paper is to deploy the chip-integrable and equally (or more) secure KLJN approach to enhancing the security of control and diagnostic systems. We will present the high level architecture and three potential applications of our approach.

[1]  L. Kish,et al.  Johnson(-like)-Noise-Kirchhoff-loop based secure classical communicator characteristics, for ranges of two to two thousand kilometers, via model-line ✩ , 2006, physics/0612153.

[2]  Marios M. Polycarpou,et al.  Fault tolerant formation flight control of UAVs , 2004 .

[3]  L. R. Rasmussen,et al.  In information retrieval: data structures and algorithms , 1992 .

[4]  Laszlo B. Kish,et al.  Current Injection Attack against the KLJN Secure Key Exchange , 2015, ArXiv.

[5]  Chiman Kwan,et al.  An Enhanced Prognostic Model for Intermittent Failures in Digital Electronics , 2007, 2007 IEEE Aerospace Conference.

[6]  Zoltan Gingl,et al.  Generalized Kirchhoff-Law-Johnson-Noise (KLJN) secure key exchange system using arbitrary resistors , 2015, Scientific Reports.

[7]  Chiman Kwan,et al.  An intelligent hierarchical approach to actuator fault diagnosis and accommodation , 2006, 2006 IEEE Aerospace Conference.

[8]  Laszlo B. Kish PROTECTION AGAINST THE MAN-IN-THE-MIDDLE-ATTACK FOR THE KIRCHHOFF-LOOP-JOHNSON(-LIKE)-NOISE CIPHER AND EXPANSION BY VOLTAGE-BASED SECURITY , 2006 .

[9]  John F. MacGregor,et al.  Multivariate SPC charts for monitoring batch processes , 1995 .

[10]  Jie Chen,et al.  Robust fault detection of jet engine sensor systems using eigenstructure assignment , 1991 .

[11]  Z. Geng,et al.  Modeling and intelligent chatter control strategies for a lathe machine , 1996, Proceeding of the 1996 IEEE International Conference on Control Applications IEEE International Conference on Control Applications held together with IEEE International Symposium on Intelligent Contro.

[12]  C. Kwan,et al.  Robust adaptive control of revolute flexible-joint manipulators using sliding technique , 1993 .

[13]  Chiman Kwan,et al.  A note on simultaneous isolation of sensor and actuator faults , 2004, IEEE Transactions on Control Systems Technology.

[14]  J. Cao,et al.  Simultaneous Sensor and Process Fault Diagnostics for Propellant Feed System , 2006 .

[15]  Laszlo B. Kish,et al.  UNCONDITIONALLY SECURE COMPUTERS, ALGORITHMS AND HARDWARE, SUCH AS MEMORIES, PROCESSORS, KEYBOARDS, FLASH AND HARD DRIVES , 2008, 0803.4479.

[16]  Chiman Kwan,et al.  Unconditionally secure credit/debit card chip scheme and physical unclonable function , 2016, ArXiv.

[17]  Adi Shamir,et al.  A method for obtaining digital signatures and public-key cryptosystems , 1978, CACM.

[18]  Chiman Kwan,et al.  A neural network based approach to adaptive fault tolerant flight control , 2004, Proceedings of the 2004 IEEE International Symposium on Intelligent Control, 2004..

[19]  Chiman Kwan,et al.  Active chatter supression in an octahedral hexapod milling machine: a design study , 1996, Smart Structures.

[20]  Chiman Kwan,et al.  Sensor Validation Using Nonlinear Minor Component Analysis , 2006, ISNN.

[21]  Horace P. Yuen,et al.  Security of Quantum Key Distribution , 2016, IEEE Access.

[22]  Chiman Kwan,et al.  A Novel Approach to Sensor and Actuator Integrity Monitoring and Fault Magnitude Reconstruction , 2017 .

[23]  Chih-Chiang Cheng,et al.  A unifying design of sliding mode and classical controllers , 1993, IEEE Trans. Autom. Control..

[24]  Laszlo B. Kish,et al.  Totally secure classical communication utilizing Johnson (-like) noise and Kirchoff's law , 2005, physics/0509136.

[25]  R. Xu,et al.  Robust Isolation Of Sensor Failures , 2008 .

[26]  Chiman Kwan,et al.  Agent-based Distributed Intrusion Detection Methodology for MANETs , 2006, Security and Management.

[27]  C. M. Kwan Robust adaptive force/motion control of constrained robots , 1996 .

[28]  C. Kwan On variable structure output feedback controllers , 1996, IEEE Trans. Autom. Control..

[29]  Claes-Goran Granqvist,et al.  Random-resistor-random-temperature Kirchhoff-law-Johnson-noise (RRRT-KLJN) key exchange , 2015, 1509.08150.

[30]  Sirish L. Shah,et al.  Fault detection and isolation in the presence of process uncertainties , 2005 .

[31]  Sirish L. Shah,et al.  Structured residual vector-based approach to sensor fault detection and isolation , 2002 .

[32]  Dongxu Li,et al.  A Hierarchical Approach To Multi-Player Pursuit-Evasion Differential Games , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[33]  Gang Tao,et al.  Adaptive Control of Systems with Actuator and Sensor Nonlinearities , 1996 .

[34]  P. Miller,et al.  Contribution plots: a missing link in multivariate quality control , 1998 .

[35]  Chiman Kwan,et al.  Physical uncloneable function hardware keys utilizing Kirchhoff-law-Johnson-noise secure key exchange and noise-based logic , 2013, ArXiv.

[36]  Shihan Sajeed,et al.  Finite-key-size effect in a commercial plug-and-play QKD system , 2016, 1610.06876.

[37]  C. M. Kwan Sliding control using output feedback , 1996 .

[38]  C. Kwan,et al.  Real-time system condition monitoring using wireless sensors , 2009, 2009 IEEE Aerospace conference.

[39]  Laszlo B. Kish,et al.  On the security of the Kirchhoff-law–Johnson-noise (KLJN) communicator , 2013, Quantum Inf. Process..

[40]  Laszlo B. Kish,et al.  The Kish Cypher: The Story of KLJN for Unconditional Security , 2014 .

[41]  Robert S. Balog,et al.  Unconditional security for the smart power grids and star networks , 2015, 2015 International Conference on Noise and Fluctuations (ICNF).

[42]  Marios M. Polycarpou,et al.  Actuator Fault Diagnosis and Accommodation for Improved Flight Safety , 2005 .

[43]  Laszlo B. Kish,et al.  Enhanced secure key exchange systems based on the Johnson-noise scheme , 2013, ArXiv.

[44]  Xiaolin Cao,et al.  Securing vehicle communication systems by the KLJN key exchange protocol , 2014, ArXiv.

[45]  Adrian Cho,et al.  Simple Noise May Stymie Spies Without Quantum Weirdness , 2005, Science.

[46]  Chiman Kwan,et al.  A novel approach to fault diagnostics and prognostics , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[47]  Chiman Kwan,et al.  Submarine pitch and depth control using FCMAC neural networks , 1998, Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207).

[48]  Frank L. Lewis,et al.  Robust spacecraft attitude control using adaptive fuzzy logic , 2000, Int. J. Syst. Sci..

[49]  Jacob Scheuer,et al.  Effective privacy amplification for secure classical communications , 2011, ArXiv.

[50]  Frank L. Lewis,et al.  Design and implementation of industrial neural network controller using backstepping , 2003, IEEE Trans. Ind. Electron..

[51]  C. M. Kwan,et al.  Modeling and intellligent chatter control strategies for a lathe machine , 1996 .