Structure-preserving strategy for conservative simulation of the relativistic nonlinear Landau-Fokker-Planck equation.

Mathematical symmetries of the Beliaev-Budker kernel are the most important structure of the relativistic Landau-Fokker-Planck equation. In most numerical simulations, however, one of the symmetries is not preserved in the discrete level resulting in a violation of the energy conservation. Recently, we proposed a charge-momentum-energy-conserving relativistic Vlasov-Maxwell scheme by preserving mathematical formulas in discrete form, and here we apply the concept to the relativistic Landau-Fokker-Planck equation. Through a numerical experiment of relativistic collisional relaxation, a mass-momentum-energy-conserving simulation has been demonstrated without any artificial constraints.

[1]  J. Brackbill,et al.  The Effect of Nonzero ∇ · B on the numerical solution of the magnetohydrodynamic equations☆ , 1980 .

[2]  Karney,et al.  Differential form of the collision integral for a relativistic plasma. , 1987, Physical review letters.

[3]  D. A. Knoll,et al.  An Implicit Energy-Conservative 2D Fokker—Planck Algorithm , 2000 .

[4]  Christophe Buet,et al.  Positive, conservative, equilibrium state preserving and implicit difference schemes for the isotropic Fokker-Planck-Landau equation , 2007 .

[5]  Yasuyuki Nakao,et al.  Two-dimensional relativistic Fokker-Planck model for core plasma heating in fast ignition targets , 2006 .

[6]  Mark Sherlock,et al.  Universal scaling of the electron distribution function in one-dimensional simulations of relativistic laser-plasma interactions , 2009 .

[7]  Pierre Degond,et al.  Fast Algorithms for Numerical, Conservative, and Entropy Approximations of the Fokker-Planck-Landau Equation , 1997 .

[8]  C. S. Chang,et al.  A Fokker-Planck-Landau collision equation solver on two-dimensional velocity grid and its application to particle-in-cell simulation , 2014 .

[9]  H. Takabe,et al.  Numerical study of pair creation by ultraintense lasers , 2002 .

[10]  Michael D. Perry,et al.  Ignition and high gain with ultrapowerful lasers , 1994 .

[11]  Luis Chacón,et al.  An equilibrium-preserving discretization for the nonlinear Rosenbluth-Fokker-Planck operator in arbitrary multi-dimensional geometry , 2017, J. Comput. Phys..

[12]  Josef Stoer,et al.  Numerische Mathematik 1 , 1989 .

[13]  A. Fukuyama,et al.  Fokker-Planck simulation of runaway electron generation in disruptions with the hot-tail effect , 2016 .

[14]  Charles F. F. Karney Fokker-Planck and Quasilinear Codes , 1986 .

[15]  J. Hawley,et al.  Simulation of magnetohydrodynamic flows: A Constrained transport method , 1988 .

[16]  Pierre Degond,et al.  An entropy scheme for the Fokker-Planck collision operator of plasma kinetic theory , 1994 .

[17]  M. Pekker,et al.  Conservative difference schemes for the Fokker-Planck equation , 1984 .

[18]  Y. Berezin,et al.  Conservative finite-difference schemes for the Fokker-Planck equations not violating the law of an increasing entropy , 1987 .

[19]  William M. MacDonald,et al.  Fokker-Planck Equation for an Inverse-Square Force , 1957 .

[20]  Eero Hirvijoki,et al.  Conservative discretization of the Landau collision integral , 2016 .

[21]  Tünde Fülöp,et al.  NORSE: A solver for the relativistic non-linear Fokker-Planck equation for electrons in a homogeneous plasma , 2016, Comput. Phys. Commun..

[22]  Soshi Kawai,et al.  Finite-volume-concept-based Padé-type filters , 2017, J. Comput. Phys..

[23]  M. Rosenbluth,et al.  Theory for avalanche of runaway electrons in tokamaks , 1997 .

[24]  Enrico Fermi,et al.  On the Origin of the Cosmic Radiation , 1949 .

[25]  Charles F. F. Karney,et al.  Efficiency of current drive by fast waves , 2005, physics/0501058.

[26]  E. Eich Convergence results for a coordinate projection method applied to mechanical systems with algebraic constraints , 1993 .

[27]  J. S. Chang,et al.  A practical difference scheme for Fokker-Planck equations☆ , 1970 .

[28]  Stéphane Cordier,et al.  Numerical Analysis of the Isotropic Fokker–Planck–Landau Equation , 2002 .

[29]  Luis Chacón,et al.  A mass, momentum, and energy conserving, fully implicit, scalable algorithm for the multi-dimensional, multi-species Rosenbluth-Fokker-Planck equation , 2015, J. Comput. Phys..

[30]  Naofumi Ohnishi,et al.  Quadratic conservative scheme for relativistic Vlasov-Maxwell system , 2018, J. Comput. Phys..

[31]  M. Sherlock,et al.  Superluminal sheath-field expansion and fast-electron-beam divergence measurements in laser-solid interactions. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[32]  Yasuyuki Nakao,et al.  Fokker-Planck simulations for core heating in subignition cone-guiding fast ignition targets , 2009 .

[33]  Soon‐Yeong Chung,et al.  Positive , 2020, Definitions.

[34]  A. Mignone,et al.  High-order Godunov schemes for global 3D MHD simulations of accretion disks. I. Testing the linear growth of the magneto-rotational instability , 2009, 0906.5516.

[35]  Patrick H. Worley,et al.  A fully non-linear multi-species Fokker-Planck-Landau collision operator for simulation of fusion plasma , 2016, J. Comput. Phys..

[36]  R. Harvey,et al.  A fully-neoclassical finite-orbit-width version of the CQL3D Fokker–Planck code , 2016 .

[37]  P. Alam ‘E’ , 2021, Composites Engineering: An A–Z Guide.

[38]  C. S. Chang,et al.  Erratum: “A Fokker-Planck-Landau collision equation solver on two-dimensional velocity grid and its application to particle-in-cell simulation” [Phys. Plasmas 21, 032503 (2014)] , 2014 .

[39]  H. Dreicer,et al.  Electron and Ion Runaway in a Fully Ionized Gas. I , 1959 .

[40]  Seiji Zenitani,et al.  Loading relativistic Maxwell distributions in particle simulations , 2015, 1504.03910.

[41]  George H. Miley,et al.  An implicit energy-conservative 2D Fokker-Planck algorithm: II. Jacobian-free Newton—Krylov solver , 2000 .

[42]  Stéphane Cordier,et al.  Conservative and Entropy Decaying Numerical Scheme for the Isotropic Fokker-Planck-Landau Equation , 1998 .

[43]  Tim Ridgway Be Positive! , 2015, South Dakota medicine : the journal of the South Dakota State Medical Association.

[44]  Christophe Buet,et al.  About positive, energy conservative and equilibrium state preserving schemes for the isotropic Fokker-Planck-Landau equation , 2006 .