Entropy Stable Staggered Grid Discontinuous Spectral Collocation Methods of any Order for the Compressible Navier-Stokes Equations

Staggered grid, entropy stable discontinuous spectral collocation operators of any order are developed for the compressible Euler and Navier--Stokes equations on unstructured hexahedral elements. This generalization of previous entropy stable spectral collocation work [M. H. Carpenter, T. C. Fisher, E. J. Nielsen, and S. H. Frankel, SIAM J. Sci. Comput., 36 (2014), pp. B835--B867, M. Parsani, M. H. Carpenter, and E. J. Nielsen, J. Comput. Phys., 292 (2015), pp. 88--113], extends the applicable set of points from tensor product, Legendre--Gauss--Lobatto (LGL), to a combination of tensor product Legendre--Gauss (LG) and LGL points. The new semidiscrete operators discretely conserve mass, momentum, energy, and satisfy a mathematical entropy inequality for the compressible Navier--Stokes equations in three spatial dimensions. They are valid for smooth as well as discontinuous flows. The staggered LG and conventional LGL point formulations are compared on several challenging test problems. The staggered LG ope...

[1]  P. Lax Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves , 1987 .

[2]  S. Osher Riemann Solvers, the Entropy Condition, and Difference , 1984 .

[3]  M. Merriam An Entropy-Based Approach to Nonlinear Stability , 1989 .

[4]  Marcel Vinokur,et al.  Spectral difference method for unstructured grids I: Basic formulation , 2006, J. Comput. Phys..

[5]  J. Hesthaven,et al.  Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications , 2007 .

[6]  Koen Hillewaert,et al.  Assessment of a discontinuous Galerkin method for the simulation of vortical flows at high Reynolds number , 2014 .

[7]  Matteo Parsani,et al.  Entropy stable discontinuous interfaces coupling for the three-dimensional compressible Navier-Stokes equations , 2015, J. Comput. Phys..

[8]  Graham Simpson,et al.  An Experimental and Computational Study of the Aerodynamics of a Square Cross-Section Body at Supersonic Speeds , 2003 .

[9]  Georg May,et al.  A Spectral Dierence Method for the Euler and Navier-Stokes Equations on Unstructured Meshes , 2006 .

[10]  Travis C. Fisher,et al.  High-order entropy stable finite difference schemes for nonlinear conservation laws: Finite domains , 2013, J. Comput. Phys..

[11]  David Gottlieb,et al.  Spectral Methods on Arbitrary Grids , 1995 .

[12]  Harold L. Atkins,et al.  QUADRATURE-FREE IMPLEMENTATION OF DISCONTINUOUS GALERKIN METHOD FOR HYPERBOLIC EQUATIONS , 1996 .

[13]  E. Tadmor Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems , 2003, Acta Numerica.

[14]  C. Bernardi,et al.  A New Nonconforming Approach to Domain Decomposition : The Mortar Element Method , 1994 .

[15]  Eitan Tadmor,et al.  ENTROPY STABLE APPROXIMATIONS OF NAVIER-STOKES EQUATIONS WITH NO ARTIFICIAL NUMERICAL VISCOSITY , 2006 .

[16]  David E. Keyes,et al.  Efficiency of High Order Spectral Element Methods on Petascale Architectures , 2016, ISC.

[17]  Nail K. Yamaleev,et al.  Discretely conservative finite-difference formulations for nonlinear conservation laws in split form: Theory and boundary conditions , 2013, J. Comput. Phys..

[18]  Magnus Svärd,et al.  Weak solutions and convergent numerical schemes of modified compressible Navier-Stokes equations , 2015, J. Comput. Phys..

[19]  Travis Calob Fisher,et al.  High-order L2 stable multi-domain finite difference method for compressible flows , 2012 .

[20]  Matteo Parsani,et al.  Towards an Entropy Stable Spectral Element Framework for Computational Fluid Dynamics , 2016 .

[21]  Paul Fischer,et al.  Spectral element methods for large scale parallel Navier—Stokes calculations , 1994 .

[22]  Matteo Parsani,et al.  Entropy Stable Wall Boundary Conditions for the Compressible Navier-Stokes Equations , 2014 .

[23]  H. T. Huynh,et al.  A Flux Reconstruction Approach to High-Order Schemes Including Discontinuous Galerkin Methods , 2007 .

[24]  John H. Kolias,et al.  A CONSERVATIVE STAGGERED-GRID CHEBYSHEV MULTIDOMAIN METHOD FOR COMPRESSIBLE FLOWS , 1995 .

[25]  Magnus Svärd,et al.  Entropy stable schemes for initial-boundary-value conservation laws , 2012 .

[26]  Steven H. Frankel,et al.  Entropy Stable Spectral Collocation Schemes for the Navier-Stokes Equations: Discontinuous Interfaces , 2014, SIAM J. Sci. Comput..

[27]  Jonathan R. Bull,et al.  Simulation of the Compressible Taylor Green Vortex using High-Order Flux Reconstruction Schemes , 2014 .

[28]  Antony Jameson,et al.  A New Class of High-Order Energy Stable Flux Reconstruction Schemes , 2011, J. Sci. Comput..

[29]  Matteo Parsani,et al.  Entropy stable wall boundary conditions for the three-dimensional compressible Navier-Stokes equations , 2014, J. Comput. Phys..

[30]  Takeo Nakagawa,et al.  Vortex shedding behind a square cylinder in transonic flows , 1987, Journal of Fluid Mechanics.

[31]  Matteo Parsani,et al.  Entropy Stable Staggered Grid Spectral Collocation for the Burgers' and Compressible Navier-Stokes Equations , 2015 .

[32]  Philip L. Roe,et al.  Affordable, entropy-consistent Euler flux functions II: Entropy production at shocks , 2009, J. Comput. Phys..

[33]  Steven A. Orszag,et al.  The Taylor-Green vortex and fully developed turbulence , 1984 .

[34]  Gregor Gassner,et al.  On the Quadrature and Weak Form Choices in Collocation Type Discontinuous Galerkin Spectral Element Methods , 2010, J. Sci. Comput..

[35]  A. Beck,et al.  On the accuracy of high-order discretizations for underresolved turbulence simulations , 2013 .

[36]  D. Gottlieb,et al.  Time-stable boundary conditions for finite-difference schemes solving hyperbolic systems: methodology and application to high-order compact schemes , 1994 .

[37]  Magnus Svärd,et al.  Entropy-Stable Schemes for the Euler Equations with Far-Field and Wall Boundary Conditions , 2014, J. Sci. Comput..

[38]  Yvon Maday,et al.  A COLLOCATION METHOD OVER STAGGERED GRIDS FOR THE STOKES PROBLEM , 1988 .

[39]  Gregor J. Gassner,et al.  A kinetic energy preserving nodal discontinuous Galerkin spectral element method , 2014 .