Theoretical analysis of the rotational barrier of ethane.

The understanding of the ethane rotation barrier is fundamental for structural theory and the conformational analysis of organic molecules and requires a consistent theoretical model to differentiate the steric and hyperconjugation effects. Due to recently renewed controversies over the barrier's origin, we developed a computational approach to probe the rotation barriers of ethane and its congeners in terms of steric repulsion, hyperconjugative interaction, and electronic and geometric relaxations. Our study reinstated that the conventional steric repulsion overwhelmingly dominates the barriers.

[1]  F. Weinhold,et al.  Quantum-mechanical studies on the origin of barriers to internal rotation about single bonds , 1979 .

[2]  H. A. Staab Resonance in Organic Chemistry, von G. W. Wheland. Verlag J. Wiley & Sons Inc., New York. 1955. 1. Aufl. XIII, 846 S., geb. $ 15.— , 1957 .

[3]  Frank Weinhold,et al.  Natural Bond Orbital Analysis of Internal Rotation Barriers and Related Phenomena , 1991 .

[4]  Matthew D. Wodrich,et al.  The concept of protobranching and its many paradigm shifting implications for energy evaluations. , 2007, Chemistry.

[5]  P. Payne,et al.  Barriers to Rotation and Inversion , 1977 .

[6]  Frank Weinhold,et al.  Origin of Methyl Internal Rotation Barriers , 1999 .

[7]  L. Goodman,et al.  Flexing analysis of steric exchange repulsion accompanying ethane internal rotation , 1998 .

[8]  Yirong Mo,et al.  An energetic measure of aromaticity and antiaromaticity based on the Pauling-Wheland resonance energies. , 2006, Chemistry.

[9]  E. Baerends,et al.  The case for steric repulsion causing the staggered conformation of ethane. , 2003, Angewandte Chemie.

[10]  L. Goodman,et al.  Flexing analysis of ethane internal rotation energetics , 1999 .

[11]  P. Kollman,et al.  Encyclopedia of computational chemistry , 1998 .

[12]  K. B. Wiberg Rotational Barriers: Ab Initio Computations , 2002 .

[13]  F. Weinhold,et al.  Antisymmetrization effects in bond‐orbital models of internal rotation barriers , 1980 .

[14]  Enrico Clementi,et al.  Barrier to Internal Rotation in Ethane , 1966 .

[15]  Yirong Mo,et al.  Charge transfer in the electron donor-acceptor complex BH3NH3. , 2004, Journal of the American Chemical Society.

[16]  M. Karplus,et al.  Bond-function analysis of rotational barriers: Methanol , 1968 .

[17]  Hilton A. Smith,et al.  Heats of Organic Reactions. II. Hydrogenation of Some Simpler Olefinic Hydrocarbons , 1935 .

[18]  R. S. Mulliken Intensities of Electronic Transitions in Molecular Spectra IV. Cyclic Dienes and Hyperconjugation , 1939 .

[19]  F. D. Greene Resonance in organic chemistry , 1956 .

[20]  G. Frenking,et al.  Direct estimate of the conjugative and hyperconjugative stabilization in diynes, dienes, and related compounds. , 2005, Angewandte Chemie.

[21]  F. Weinhold Rebuttal to the Bickelhaupt–Baerends Case for Steric Repulsion Causing the Staggered Conformation of Ethane , 2003 .

[22]  L. Goodman,et al.  Disilane Internal Rotation , 2001 .

[23]  Y. Mo,et al.  A simple electrostatic model for trisilylamine: Theoretical examinations of the n ->sigma* negative hyperconjugation, p pi -> d pi bonding, and stereoelectronic interaction , 1999 .

[24]  Frank Weinhold,et al.  Origin of Methyl Internal Rotation Barriers , 1999 .

[25]  Kenneth B. Wiberg,et al.  Origin of rotation and inversion barriers , 1990 .

[26]  M. Gordon,et al.  Localized Charge Distributions. I. General Theory, Energy Partitioning, and the Internal Rotation Barrier in Ethane , 1971 .

[27]  P. Schreiner Teaching the right reasons: lessons from the mistaken origin of the rotational barrier in ethane. , 2002, Angewandte Chemie.

[28]  L. Curtiss,et al.  Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint , 1988 .

[29]  Lionel Goodman,et al.  Hyperconjugation not steric repulsion leads to the staggered structure of ethane , 2001, Nature.

[30]  P. Schleyer Encyclopedia of computational chemistry , 1998 .

[31]  Lingchun Song,et al.  Steric strain versus hyperconjugative stabilization in ethane congeners. , 2005, The journal of physical chemistry. A.

[32]  Jiali Gao,et al.  The magnitude of hyperconjugation in ethane: a perspective from ab initio valence bond theory. , 2004, Angewandte Chemie.

[33]  J. Lowe The Barrier to Internal Rotation in Ethane , 1973, Science.

[34]  R. Bohn A Butane Analogue, 3-Hexyne, Is Eclipsed , 2004 .

[35]  Paul von Ragué Schleyer,et al.  Relationships in the Rotational Barriers of All Group 14 Ethane Congeners H3X-YH3 (X, Y = C, Si, Ge, Sn, Pb). Comparisons of ab Initio Pseudopotential and All-Electron Results , 1992 .

[36]  J. D. Kemp,et al.  Hindered Rotation of the Methyl Groups in Ethane , 1936 .

[37]  Y. Mo,et al.  Theoretical analysis of electronic delocalization , 1998 .

[38]  G. Frenking,et al.  Direct estimate of the strength of conjugation and hyperconjugation by the energy decomposition analysis method. , 2006, Chemistry.