Multilevel analysis of daily time use and time allocation to activity types accounting for complex covariance structures using correlated random effects

In this paper multilevel analysis is used to study individual choices of time allocation to maintenance, subsistence, leisure, and travel time exploiting the nested data hierarchy of households, persons, and occasions of measurement. The multilevel models in this paper examine the joint and multivariate correlation structure of four dependent variables in a cross-sectional and longitudinal way. In this way, observed and unobserved heterogeneity are estimated using random effects at the household, person, and temporal levels. In addition, random coefficients associated with explanatory variables are also estimated and correlated with these random effects. Using the wide spectrum of options offered by multilevel models to account for individual and group heterogeneity, complex interdependencies among individuals within their households, within themselves over time, and within themselves but across different indicators of behavior, are analyzed. Findings in this analysis include large variance contribution by each level considered, clear evidence of non-linear dynamic behavior in time-allocation, different trajectories of change in time allocation for each of the four dependent variables used, and lack of symmetry in change over time characterized by different trajectories in the longitudinal evolution of each dependent variable. In addition, the multivariate correlation structure among the four dependent variables is different at each of the three levels of analysis.