All complex equiangular tight frames in dimension 3
暂无分享,去创建一个
[1] Ferenc SzollHosi,et al. Complex Hadamard matrices and Equiangular Tight Frames , 2011, 1104.2940.
[2] Kyle Beauchamp,et al. Orthogonal maximal abelian *-subalgebras of the 6×6 matrices , 2006 .
[3] John B. Shoven,et al. I , Edinburgh Medical and Surgical Journal.
[4] Markus Grassl,et al. The monomial representations of the Clifford group , 2011, Quantum Inf. Comput..
[5] Stefan Weigert,et al. All mutually unbiased bases in dimensions two to five , 2009, Quantum Inf. Comput..
[6] Joseph M. Renes. Equiangular Tight Frames from Paley Tournaments , 2004 .
[7] Jean-Charles Faugère,et al. FGb: A Library for Computing Gröbner Bases , 2010, ICMS.
[8] Uffe Haagerup,et al. Orthogonal Maximal Abelian *-Subalgebras of the N×n Matrices and Cyclic N-Roots , 1995 .
[9] Ferenc Szöllősi,et al. Complex Hadamard matrices of order 6: a four‐parameter family , 2012 .
[10] Ferenc SzollHosi,et al. Construction, classification and parametrization of complex Hadamard matrices , 2011, 1110.5590.
[11] G. Zauner,et al. QUANTUM DESIGNS: FOUNDATIONS OF A NONCOMMUTATIVE DESIGN THEORY , 2011 .
[12] Andreas Klappenecker,et al. Mutually unbiased bases are complex projective 2-designs , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..
[13] Chris D. Godsil,et al. Type-II matrices and combinatorial structures , 2010, Comb..
[14] Peter G. Casazza,et al. Every Hilbert space frame has a Naimark complement , 2011, 1104.0810.
[15] Shirley Dex,et al. JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .
[16] V. Paulsen,et al. Optimal frames for erasures , 2004 .
[17] Aldo Conca,et al. Gröbner Bases of Ideals of Minors of a Symmetric Matrix , 1994 .
[18] Hadi Kharaghani,et al. On unit weighing matrices with small weight , 2013, Discret. Math..
[19] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[20] Daniel Lazard,et al. Thirty years of Polynomial System Solving, and now? , 2009, J. Symb. Comput..
[21] Antoine Joux,et al. Algebraic Cryptanalysis of Hidden Field Equation (HFE) Cryptosystems Using Gröbner Bases , 2003, CRYPTO.
[22] A. Cohn,et al. Über die Anzahl der Wurzeln einer algebraischen Gleichung in einem Kreise , 1922 .