All complex equiangular tight frames in dimension 3

In this paper we describe some new algebraic features of the Gram matrices of complex Equiangular Tight Frames (ETF). This lead on the one hand to the nonexistence of several low dimensional complex ETFs; and on the other hand to the full algebraic classification of all complex ETFs in C. We use computer aided methods, in particular, Gröbner basis computations to obtain these results. 2000 Mathematics Subject Classification. Primary 05B20, secondary 46L10.

[1]  Ferenc SzollHosi,et al.  Complex Hadamard matrices and Equiangular Tight Frames , 2011, 1104.2940.

[2]  Kyle Beauchamp,et al.  Orthogonal maximal abelian *-subalgebras of the 6×6 matrices , 2006 .

[3]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[4]  Markus Grassl,et al.  The monomial representations of the Clifford group , 2011, Quantum Inf. Comput..

[5]  Stefan Weigert,et al.  All mutually unbiased bases in dimensions two to five , 2009, Quantum Inf. Comput..

[6]  Joseph M. Renes Equiangular Tight Frames from Paley Tournaments , 2004 .

[7]  Jean-Charles Faugère,et al.  FGb: A Library for Computing Gröbner Bases , 2010, ICMS.

[8]  Uffe Haagerup,et al.  Orthogonal Maximal Abelian *-Subalgebras of the N×n Matrices and Cyclic N-Roots , 1995 .

[9]  Ferenc Szöllősi,et al.  Complex Hadamard matrices of order 6: a four‐parameter family , 2012 .

[10]  Ferenc SzollHosi,et al.  Construction, classification and parametrization of complex Hadamard matrices , 2011, 1110.5590.

[11]  G. Zauner,et al.  QUANTUM DESIGNS: FOUNDATIONS OF A NONCOMMUTATIVE DESIGN THEORY , 2011 .

[12]  Andreas Klappenecker,et al.  Mutually unbiased bases are complex projective 2-designs , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[13]  Chris D. Godsil,et al.  Type-II matrices and combinatorial structures , 2010, Comb..

[14]  Peter G. Casazza,et al.  Every Hilbert space frame has a Naimark complement , 2011, 1104.0810.

[15]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[16]  V. Paulsen,et al.  Optimal frames for erasures , 2004 .

[17]  Aldo Conca,et al.  Gröbner Bases of Ideals of Minors of a Symmetric Matrix , 1994 .

[18]  Hadi Kharaghani,et al.  On unit weighing matrices with small weight , 2013, Discret. Math..

[19]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[20]  Daniel Lazard,et al.  Thirty years of Polynomial System Solving, and now? , 2009, J. Symb. Comput..

[21]  Antoine Joux,et al.  Algebraic Cryptanalysis of Hidden Field Equation (HFE) Cryptosystems Using Gröbner Bases , 2003, CRYPTO.

[22]  A. Cohn,et al.  Über die Anzahl der Wurzeln einer algebraischen Gleichung in einem Kreise , 1922 .