On learning rules and memory storage abilities of asymmetrical neural networks

Most models of memory proposed so far use symmetric synapses. We show that this assumption is not necessary for a neural network to display memory abilities. We present an analytical derivation of memory capacities which does not appeal to the replica technique. It only uses a more transparent and straightforward mean-field approximation. The memorization efficiency depends on four learning parameters which, if the case arises, can be related to datas provided by experiments carried out on real synapses. We show that the learning rules observed so far are fully compatible with memorization capacities La plupart des modeles de memoire utilise des synapses symetriques. On montre, ici, que l'existence d'une capacite de memorisation ne depend pas de cette hypothese. Nous presentons une theorie de la capacite de stockage en memoire qui repose sur une approximation de champ moyen et de proprietes d'automoyennage

[1]  Pierre Peretto,et al.  Stochastic Dynamics of Neural Networks , 1986, IEEE Transactions on Systems, Man, and Cybernetics.

[2]  Sompolinsky,et al.  Storing infinite numbers of patterns in a spin-glass model of neural networks. , 1985, Physical review letters.

[3]  Kanter,et al.  Temporal association in asymmetric neural networks. , 1986, Physical review letters.

[4]  E. Kandel Cellular basis of behavior: An introduction to behavioral neurobiology. , 1976 .

[5]  J J Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[6]  A. Crisanti,et al.  Saturation Level of the Hopfield Model for Neural Network , 1986 .

[7]  Kinzel Remanent magnetization of the infinite-range Ising spin glass. , 1986, Physical review. B, Condensed matter.

[8]  R. Hengstenberg Kandel E.R. Cellular basis of behavior , 1978, Neuroscience.

[9]  D. Amit,et al.  Statistical mechanics of neural networks near saturation , 1987 .

[10]  William B. Levy,et al.  Synaptic modification, neuron selectivity, and nervous system organization , 1985 .

[11]  Baaquie Path-integral derivation of the heat kernel on SU(N) space. , 1985, Physical review. D, Particles and fields.

[12]  W. Singer,et al.  The effects of early visual experience on the cat's visual cortex and their possible explanation by Hebb synapses. , 1981, The Journal of physiology.

[13]  Giorgio Parisi,et al.  SK Model: The Replica Solution without Replicas , 1986 .