Computing Igusa's local zeta function of univariates in deterministic polynomial-time

Igusa's local zeta function $Z_{f,p}(s)$ is the generating function that counts the number of integral roots, $N_{k}(f)$, of $f(\mathbf x) \bmod p^k$, for all $k$. It is a famous result, in analytic number theory, that $Z_{f,p}$ is a rational function in $\mathbb{Q}(p^s)$. We give an elementary proof of this fact for a univariate polynomial $f$. Our proof is constructive as it gives a closed-form expression for the number of roots $N_{k}(f)$. Our proof, when combined with the recent root-counting algorithm of (Dwivedi, Mittal, Saxena, CCC, 2019), yields the first deterministic poly($|f|, \log p$) time algorithm to compute $Z_{f,p}(s)$. Previously, an algorithm was known only in the case when $f$ completely splits over $\mathbb{Q}_p$; it required the rational roots to use the concept of generating function of a tree (Zuniga-Galindo, J.Int.Seq., 2003).

[1]  J. Denef Local zeta-functions and euler characteristics , 1991 .

[2]  Cristian Dumitrescu,et al.  The Riemann Hypothesis , 2013 .

[3]  D. Katz,et al.  A New Generating Function for Calculating the Igusa Local Zeta Function , 2015, 1506.07869.

[4]  Y. Sakellaridis On the unramified spectrum of spherical varieties over p-adic fields , 2006, Compositio Mathematica.

[5]  N. Reshetikhin,et al.  Combinatorial Quantum Field Theory and Gluing Formula for Determinants , 2014, 1403.6170.

[6]  Josef Schicho,et al.  A Computer Program for the Resolution of Singularities , 2000 .

[7]  Carlo Sircana,et al.  Factorization of Polynomials over Z/(pn) , 2017, ISSAC.

[8]  J. Igusa,et al.  Complex powers and asymptotic expansions. I. Functions of certain types. , 1974 .

[9]  A. Weil Numbers of solutions of equations in finite fields , 1949 .

[10]  Stephen W. Hawking Zeta function regularization of path integrals in curved spacetime , 1977 .

[11]  Diane Meuser A survey of Igusa’s local zeta function , 2016 .

[12]  Alan G. B. Lauder Counting Solutions to Equations in Many Variables over Finite Fields , 2004, Found. Comput. Math..

[13]  Alexander Grothendieck,et al.  Formule de Lefschetz et rationalité des fonctions $L$ , 1966 .

[14]  E. Elizalde Applications of Zeta Function Regularization in QFT , 1996 .

[15]  Igusa-type functions associated to finite formed spaces and their functional equations , 2006, math/0603565.

[16]  Denis Ibadula On the Plane Cubics over Q p and the Associated Igusa Zeta Function , 2006 .

[17]  D. Cantor,et al.  Factoring polynomials over p-adic fields , 2000 .

[18]  Shaowei Lin Asymptotic Approximation of Marginal Likelihood Integrals , 2010, 1003.5338.

[19]  Josef Schicho,et al.  Automated Resolution of Singularities for Hypersurfaces , 2000, J. Symb. Comput..

[20]  Jan Denef,et al.  Newton polyhedra and Igusa's local zeta function , 2001 .

[21]  Manjul Bhargava,et al.  P-orderings and polynomial functions on arbitrary subsets of Dedekind rings. , 1997 .

[22]  Orlando E. Villamayor,et al.  Constructiveness of Hironaka's resolution , 1989 .

[23]  Jérémy Berthomieu,et al.  Polynomial root finding over local rings and application to error correcting codes , 2013, Applicable Algebra in Engineering, Communication and Computing.

[24]  D. Grigoriev,et al.  Effective Hironaka resolution and its complexity , 2011 .

[25]  J. Maurice Rojas,et al.  Randomized Polynomial-Time Root Counting in Prime Power Rings , 2018, Math. Comput..

[26]  Wacław Sierpiński Remarques sur les racines d'une congruence , 1955 .

[27]  B. Klopsch,et al.  Zeta functions of three-dimensional p-adic Lie algebras , 2009 .

[28]  W. A. Zuniga-Galindo,et al.  Igusa’s local zeta functions of semiquasihomogeneous polynomials , 1999, math/9909184.

[29]  Dirk Segers,et al.  Exponential sums and polynomial congruences along p-adic submanifolds , 2011, Finite Fields Their Appl..

[30]  Jan Denef,et al.  The rationality of the Poincaré series associated to thep-adic points on a variety , 1984 .

[31]  A. L. Chistov Algorithm of polynomial complexity for factoring polynomials over local fields , 1994 .

[32]  Edward Bierstone,et al.  Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant , 1995 .

[33]  Adam R. Klivans Factoring Polynomials Modulo Composites , 1997 .

[34]  Bruce Dearden,et al.  Roots of Polynomials Modulo Prime Powers , 1997, Eur. J. Comb..

[35]  Marvin J. Greenberg Rational points in henselian discrete valuation rings , 1966 .

[36]  Functional equations for zeta functions of groups and rings , 2006, math/0612511.

[37]  M. M. Chojnacka-Pniewska Sur les congruences aux racines données , 1956 .

[38]  Dorian Goldfeld,et al.  Zeta functions, one-way functions, and pseudorandom number generators , 1997 .

[39]  B. Riemann,et al.  Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse , 2013 .

[40]  W. A. Zuniga-Galindo Computing Igusa's Local Zeta Functions of Univariate Polynomials, and Linear Feedback Shift Registers , 2003, ArXiv.

[41]  The Igusa Local Zeta Function Associated with the Singular Cases of the Determinant and the Pfaffian , 1996 .

[42]  Ana Salagean,et al.  Factoring polynomials over Z4 and over certain Galois rings , 2005, Finite Fields Their Appl..

[43]  Barry Robson,et al.  Clinical and pharmacogenomic data mining: 3. Zeta theory as a general tactic for clinical bioinformatics. , 2005, Journal of proteome research.

[44]  Joachim von zur Gathen,et al.  Factoring Modular Polynomials , 1998, J. Symb. Comput..

[45]  Davesh Maulik Root Sets of Polynomials Modulo Prime Powers , 2001, J. Comb. Theory, Ser. A.

[46]  N. Koblitz p-adic Numbers, p-adic Analysis, and Zeta-Functions , 1977 .

[47]  A. Weil Sur certains groupes d'opérateurs unitaires , 1964 .

[48]  K. Willison An intracellular calcium frequency code model extended to the Riemann zeta function. , 2019, 1903.07394.

[49]  Analytic properties of zeta functions and subgroup growth , 2000, math/0011267.

[50]  Application of zeta function to quantum cryptography , 2005, Proceedings from the Sixth Annual IEEE SMC Information Assurance Workshop.

[51]  Jun-ichi Igusa,et al.  An Introduction to the Theory of Local Zeta Functions , 2007 .

[52]  W. Veys Zeta Functions for Curves and Log Canonical Models , 1997 .

[53]  渡邊 澄夫 Algebraic geometry and statistical learning theory , 2009 .

[54]  Nitin Saxena,et al.  Counting basic-irreducible factors mod pk in deterministic poly-time and p-adic applications , 2019, Electron. Colloquium Comput. Complex..

[55]  Harald Niederreiter,et al.  Introduction to finite fields and their applications: List of Symbols , 1986 .

[56]  W. A. Zuniga-Galindo,et al.  Local zeta function for curves, non-degeneracy conditions and Newton polygons , 2001 .

[57]  A. Ehrenfeucht,et al.  The Computational Complexity of ({\it XOR, AND\/})-Counting Problems , 1990 .

[58]  A. Weil,et al.  Variétés abéliennes et courbes algébriques , 1948 .

[59]  Edwin León-Cardenal,et al.  An Introduction to the Theory of Local Zeta Functions from Scratch , 2019, Revista Integración.

[60]  J. Maurice Rojas,et al.  Counting Roots of Polynomials Over Prime Power Rings , 2017, The Open Book Series.