In silico study of wall-associated kinase family reveals large-scale genomic expansion potentially connected with functional diversification in Populus

[1]  E. Birney,et al.  Pfam: the protein families database , 2013, Nucleic Acids Res..

[2]  D. Hwang Cation-π Interaction , 2013 .

[3]  B. D. Kohorn,et al.  A dominant allele of Arabidopsis pectin-binding wall-associated kinase induces a stress response suppressed by MPK6 but not MPK3 mutations. , 2012, Molecular plant.

[4]  Sebastian Wolf,et al.  Growth control and cell wall signaling in plants. , 2012, Annual review of plant biology.

[5]  D. Combes,et al.  Light-mediated K(leaf) induction and contribution of both the PIP1s and PIP2s aquaporins in five tree species: walnut (Juglans regia) case study. , 2012, Tree physiology.

[6]  C. Maurel,et al.  Insights into Populus XIP aquaporins: evolutionary expansion, protein functionality, and environmental regulation. , 2012, Journal of experimental botany.

[7]  David M. Goodstein,et al.  Phytozome: a comparative platform for green plant genomics , 2011, Nucleic Acids Res..

[8]  M. Nei,et al.  MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. , 2011, Molecular biology and evolution.

[9]  M. Petz,et al.  La enhances IRES-mediated translation of laminin B1 during malignant epithelial to mesenchymal transition , 2011, Nucleic acids research.

[10]  E. Freisinger Structural features specific to plant metallothioneins , 2011, JBIC Journal of Biological Inorganic Chemistry.

[11]  Peer Bork,et al.  Interactive Tree Of Life v2: online annotation and display of phylogenetic trees made easy , 2011, Nucleic Acids Res..

[12]  S. Duplessis,et al.  Genome-wide analysis of eukaryote thaumatin-like proteins (TLPs) with an emphasis on poplar , 2011, BMC Plant Biology.

[13]  Narmada Thanki,et al.  CDD: a Conserved Domain Database for the functional annotation of proteins , 2010, Nucleic Acids Res..

[14]  M. Martin-Magniette,et al.  Comparative transcriptomics of drought responses in Populus: a meta-analysis of genome-wide expression profiling in mature leaves and root apices across two genotypes , 2010, BMC Genomics.

[15]  Erin T. Hamanishi,et al.  Intraspecific variation in the Populus balsamifera drought transcriptome. , 2010, Plant, cell & environment.

[16]  M. Münsterkötter,et al.  Transcriptome responses to aluminum stress in roots of aspen (Populus tremula) , 2010, BMC Plant Biology.

[17]  J. Salojärvi,et al.  Transcriptional regulation of the CRK/DUF26 group of Receptor-like protein kinases by ozone and plant hormones in Arabidopsis , 2010, BMC Plant Biology.

[18]  Haibao Tang,et al.  Insights from the comparison of plant genome sequences. , 2010, Annual review of plant biology.

[19]  A. Macone,et al.  A domain swap approach reveals a role of the plant wall-associated kinase 1 (WAK1) as a receptor of oligogalacturonides , 2010, Proceedings of the National Academy of Sciences.

[20]  Chris Gehring,et al.  The Arabidopsis Wall Associated Kinase-Like 10 Gene Encodes a Functional Guanylyl Cyclase and Is Co-Expressed with Pathogen Defense Related Genes , 2010, PloS one.

[21]  Ting Lan,et al.  Extensive Functional Diversification of the Populus Glutathione S-Transferase Supergene Family[C][W] , 2009, The Plant Cell Online.

[22]  B. D. Kohorn,et al.  Pectin activation of MAP kinase and gene expression is WAK2 dependent. , 2009, The Plant journal : for cell and molecular biology.

[23]  Nicholas J Provart,et al.  Genotype and time of day shape the Populus drought response. , 2009, The Plant journal : for cell and molecular biology.

[24]  T. Tschaplinski,et al.  Poplar Genomics: State of the Science , 2009 .

[25]  I. Major,et al.  Expression profiling and functional analysis of Populus WRKY23 reveals a regulatory role in defense. , 2009, The New phytologist.

[26]  Stefan Jansson,et al.  The Populus Genome Integrative Explorer (PopGenIE): a new resource for exploring the Populus genome. , 2009, The New phytologist.

[27]  Mikael Bodén,et al.  MEME Suite: tools for motif discovery and searching , 2009, Nucleic Acids Res..

[28]  Hui Li,et al.  A novel wall-associated receptor-like protein kinase gene, OsWAK1, plays important roles in rice blast disease resistance , 2009, Plant Molecular Biology.

[29]  A. Séguin,et al.  Transcriptome profiling in hybrid poplar following interactions with Melampsora rust fungi. , 2009, Molecular plant-microbe interactions : MPMI.

[30]  Justin Foong,et al.  Expansion and Diversification of the Populus R2R3-MYB Family of Transcription Factors1[W][OA] , 2008, Plant Physiology.

[31]  Melissa D. Lehti-Shiu,et al.  Importance of Lineage-Specific Expansion of Plant Tandem Duplicates in the Adaptive Response to Environmental Stimuli1[W][OA] , 2008, Plant Physiology.

[32]  B. Meyers,et al.  Genome-wide identification of NBS resistance genes in Populus trichocarpa , 2008, Plant Molecular Biology.

[33]  D. Bonetta,et al.  Sentinels at the wall: cell wall receptors and sensors. , 2007, The New phytologist.

[34]  Jonathan D. G. Jones,et al.  The plant immune system , 2006, Nature.

[35]  Frank W Telewski,et al.  A unified hypothesis of mechanoperception in plants. , 2006, American journal of botany.

[36]  M. Gribskov,et al.  The Genome of Black Cottonwood, Populus trichocarpa (Torr. & Gray) , 2006, Science.

[37]  Masaru Kobayashi,et al.  Wall-associated kinase 1 (WAK1) is crosslinked in endomembranes, and transport to the cell surface requires correct cell-wall synthesis , 2006, Journal of Cell Science.

[38]  Annick Thomas,et al.  In vitro characterization of the homogalacturonan-binding domain of the wall-associated kinase WAK1 using site-directed mutagenesis. , 2006, Phytochemistry.

[39]  Xinxiang Peng,et al.  Involvement of a Cell Wall-Associated Kinase, WAKL4, in Arabidopsis Mineral Responses1[W] , 2005, Plant Physiology.

[40]  Lei Li,et al.  Evolutionary Expansion, Gene Structure, and Expression of the Rice Wall-Associated Kinase Gene Family1[w] , 2005, Plant Physiology.

[41]  Lina L. Feng,et al.  Evolution of distinct EGF domains with specific functions , 2005, Protein science : a publication of the Protein Society.

[42]  Richard C. Moore,et al.  The evolutionary dynamics of plant duplicate genes. , 2005, Current opinion in plant biology.

[43]  M. Bucan,et al.  Promoter features related to tissue specificity as measured by Shannon entropy , 2005, Genome Biology.

[44]  A. Decreux,et al.  Wall-associated kinase WAK1 interacts with cell wall pectins in a calcium-induced conformation. , 2005, Plant & cell physiology.

[45]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[46]  F. Baluška,et al.  Cytoskeleton-Plasma Membrane-Cell Wall Continuum in Plants. Emerging Links Revisited1 , 2003, Plant Physiology.

[47]  F. Baluška,et al.  Aluminum-Induced Gene Expression and Protein Localization of a Cell Wall-Associated Receptor Kinase in Arabidopsis1 , 2003, Plant Physiology.

[48]  S. Shiu,et al.  Expansion of the Receptor-Like Kinase/Pelle Gene Family and Receptor-Like Proteins in Arabidopsis1[w] , 2003, Plant Physiology.

[49]  A I Saeed,et al.  TM4: a free, open-source system for microarray data management and analysis. , 2003, BioTechniques.

[50]  Zheng-Hui He,et al.  The Cell Wall-Associated Kinase (WAK) andWAK-Like Kinase Gene Family1 , 2002, Plant Physiology.

[51]  S. Shiu,et al.  Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[52]  Zheng-Hui He,et al.  Antisense Expression of a Cell Wall–Associated Protein Kinase, WAK4, Inhibits Cell Elongation and Alters Morphology , 2001, The Plant Cell Online.

[53]  B. D. Kohorn,et al.  Wall-Associated Kinases Are Expressed throughout Plant Development and Are Required for Cell Expansion , 2001, Plant Cell.

[54]  J. Stenflo,et al.  Calcium-binding EGF-like modules in coagulation proteinases: function of the calcium ion in module interactions. , 2000, Biochimica et biophysica acta.

[55]  A. Holder,et al.  Solution structure of an EGF module pair from the Plasmodium falciparum merozoite surface protein 1. , 1999, Journal of molecular biology.

[56]  Zheng-Hui He,et al.  A cluster of five cell wall-associated receptor kinase genes, Wak1–5, are expressed in specific organs of Arabidopsis , 1999, Plant Molecular Biology.

[57]  Z. He,et al.  Requirement for the induced expression of a cell wall associated receptor kinase for survival during the pathogen response. , 1998, The Plant journal : for cell and molecular biology.

[58]  B. D. Kohorn,et al.  A Cell Wall-associated, Receptor-like Protein Kinase* , 1996, The Journal of Biological Chemistry.

[59]  P. Handford,et al.  The structure of a Ca2+-binding epidermal growth factor-like domain: Its role in protein-protein interactions , 1995, Cell.

[60]  H. Kishino,et al.  Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in hominoidea , 1989, Journal of Molecular Evolution.

[61]  P. Label,et al.  The molecular mechanisms of reaction wood induction. , 2014 .

[62]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[63]  Melissa D. Lehti-Shiu,et al.  Evolutionary History and Stress Regulation of Plant Receptor-Like Kinase/Pelle Genes , 2009 .

[64]  Cheng Li,et al.  Adjusting batch effects in microarray expression data using empirical Bayes methods. , 2007, Biostatistics.

[65]  D. Swofford PAUP*: Phylogenetic analysis using parsimony (*and other methods), Version 4.0b10 , 2002 .

[66]  A. Leclercq,et al.  ANATOMICAL CHARACTERISTICS OF TENSION WOOD AND OPPOSITE WOOD IN YOUNG INCLINED STEMS OF POPLAR (POPULUS EURAMERICANA CV 'GHOY') , 2001 .

[67]  M. P. Cummings,et al.  PAUP* Phylogenetic analysis using parsimony (*and other methods) Version 4 , 2000 .

[68]  D. Stuart,et al.  The structure of a Ca(2+)-binding epidermal growth factor-like domain: its role in protein-protein interactions. , 1995, Cell.