Direct numerical simulations of turbulent flows using high-order asynchrony-tolerant schemes: Accuracy and performance

Direct numerical simulations (DNS) are an indispensable tool for understanding the fundamental physics of turbulent flows. Because of their steep increase in computational cost with Reynolds number ($R_{\lambda}$), well-resolved DNS are realizable only on massively parallel supercomputers, even at moderate $R_{\lambda}$. However, at extreme scales, the communications and synchronizations between processing elements (PEs) involved in current approaches become exceedingly expensive and are expected to be a major bottleneck to scalability. In order to overcome this challenge, we developed algorithms using the so-called Asynchrony-Tolerant (AT) schemes that relax communication and synchronization constraints at a mathematical level, to perform DNS of decaying and solenoidally forced compressible turbulence. Asynchrony is introduced using two approaches, one that avoids synchronizations and the other that avoids communications. These result in periodic and random delays, respectively, at PE boundaries. We show that both asynchronous algorithms accurately resolve the large-scale and small-scale motions of turbulence, including instantaneous and intermittent fields. We also show that in asynchronous simulations the communication time is a relatively smaller fraction of the total computation time, especially at large processor count, compared to standard synchronous simulations. As a consequence, we observe improved parallel scalability up to $262144$ processors for both asynchronous algorithms.

[1]  Sanjiva K. Lele,et al.  Compressibility Effects on Turbulence , 1994 .

[2]  Jianchun Wang,et al.  Spectra and statistics in compressible isotropic turbulence , 2017 .

[3]  Victor Yakhot,et al.  THE ABDUS SALAM INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS ANOMALOUS SCALING OF STRUCTURE FUNCTIONS AND DYNAMIC CONSTRAINTS ON TURBULENCE SIMULATIONS , 2007 .

[4]  Diego Donzis,et al.  Dissipation and enstrophy in isotropic turbulence: Resolution effects and scaling in direct numerical simulations , 2008 .

[5]  D. Donzis,et al.  Universality and scaling in compressible turbulence , 2016, 1907.07871.

[6]  S. Lele Compact finite difference schemes with spectral-like resolution , 1992 .

[7]  Jörg Schumacher,et al.  Small-scale universality in fluid turbulence , 2014, Proceedings of the National Academy of Sciences.

[8]  Katepalli R Sreenivasan,et al.  Extreme events in computational turbulence , 2015, Proceedings of the National Academy of Sciences.

[9]  Aditya Konduri,et al.  High-order asynchrony-tolerant finite difference schemes for partial differential equations , 2017, J. Comput. Phys..

[10]  Krishnan Mahesh,et al.  The interaction of an isotropic field of acoustic waves with a shock wave , 1995, Journal of Fluid Mechanics.

[11]  Yuki Minamoto,et al.  DNS of a turbulent lifted DME jet flame , 2016 .

[12]  Scott Klasky,et al.  Terascale direct numerical simulations of turbulent combustion using S3D , 2008 .

[13]  A. Kolmogorov The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[14]  P. Yeung,et al.  On the Universality of the Kolmogorov Constant in Numerical Simulations of Turbulence , 1997 .

[15]  Jacqueline H. Chen,et al.  Direct numerical simulations of premixed and stratified flame propagation in turbulent channel flow , 2018, Physical Review Fluids.

[16]  K. Sreenivasan On the universality of the Kolmogorov constant , 1995 .

[17]  Tohru Nakano,et al.  Velocity field statistics in homogeneous steady turbulence obtained using a high-resolution direct numerical simulation , 2002 .

[18]  Lawrence Sirovich,et al.  Empirical and Stokes eigenfunctions and the far‐dissipative turbulent spectrum , 1990 .

[19]  John J. H. Miller On the Location of Zeros of Certain Classes of Polynomials with Applications to Numerical Analysis , 1971 .

[20]  H. Im,et al.  Stretch effects on the burning velocity of turbulent premixed hydrogen/air flames , 2000 .

[21]  Stephen B. Pope,et al.  An examination of forcing in direct numerical simulations of turbulence , 1988 .

[22]  Diego Donzis,et al.  The bottleneck effect and the Kolmogorov constant in isotropic turbulence , 2010, Journal of Fluid Mechanics.

[23]  Myoungkyu Lee,et al.  Petascale direct numerical simulation of turbulent channel flow on up to 786K cores , 2013, 2013 SC - International Conference for High Performance Computing, Networking, Storage and Analysis (SC).

[24]  G. S. Martin Dissipation , 1904, The American journal of dental science.

[25]  Intermittency in compressible flows , 1998 .

[26]  D. Donzis,et al.  Energy spectrum in the dissipation range , 2018, Physical Review Fluids.

[27]  Steven A. Orszag,et al.  Energy and spectral dynamics in forced compressible turbulence , 1990 .

[28]  S. Orszag,et al.  Energy and spectral dynamics in decaying compressible turbulence , 1992 .

[29]  D. Donzis,et al.  Shock–turbulence interactions at high turbulence intensities , 2019, Journal of Fluid Mechanics.

[30]  Sharath Girimaji,et al.  Proxy-equation paradigm: A strategy for massively parallel asynchronous computations. , 2017, Physical review. E.

[31]  S. Pope,et al.  Effects of finite spatial and temporal resolution in direct numerical simulations of incompressible isotropic turbulence , 2018, Physical Review Fluids.

[32]  R. A. Antonia,et al.  THE PHENOMENOLOGY OF SMALL-SCALE TURBULENCE , 1997 .

[33]  Diego A. Donzis,et al.  Massively parallel direct numerical simulations of forced compressible turbulence: a hybrid MPI/OpenMP approach , 2012, XSEDE '12.

[34]  D. Donzis,et al.  Reynolds and Mach number scaling in solenoidally-forced compressible turbulence using high-resolution direct numerical simulations , 2016, Journal of Fluid Mechanics.

[35]  Santosh Ansumali,et al.  Delayed difference scheme for large scale scientific simulations. , 2014, Physical review letters.

[36]  Arnold Neumaier,et al.  Introduction to Numerical Analysis , 2001 .

[37]  C. Hirsch,et al.  Numerical Computation of Internal and External Flows. By C. HIRSCH. Wiley. Vol. 1, Fundamentals of Numerical Discretization. 1988. 515 pp. £60. Vol. 2, Computational Methods for Inviscid and Viscous Flows. 1990, 691 pp. £65. , 1991, Journal of Fluid Mechanics.

[38]  Amir Averbuch,et al.  Parallel adaptive and time-stabilizing schemes for constant-coefficient parabolic PDE's , 1992 .

[39]  Aditya Konduri,et al.  Asynchronous finite-difference schemes for partial differential equations , 2014, J. Comput. Phys..

[40]  John Shalf,et al.  The International Exascale Software Project roadmap , 2011, Int. J. High Perform. Comput. Appl..

[41]  Bronis R. de Supinski,et al.  Tera-Scalable Algorithms for Variable-Density Elliptic Hydrodynamics with Spectral Accuracy , 2005, ACM/IEEE SC 2005 Conference (SC'05).

[42]  Robert H. Kraichnan,et al.  Intermittency in the Very Small Scales of Turbulence , 1967 .

[43]  Smith,et al.  Energy spectrum of homogeneous and isotropic turbulence in far dissipation range. , 1995, Physical review letters.

[44]  D. Donzis,et al.  Anomalous exponents in strong turbulence , 2018, Physica D: Nonlinear Phenomena.

[45]  A. S. Monin,et al.  Statistical Fluid Mechanics, Vol. II , 1976 .

[46]  D. Donzis,et al.  Fluctuations of thermodynamic variables in stationary compressible turbulence , 2013, Journal of Fluid Mechanics.

[47]  Jianchun Wang,et al.  A hybrid numerical simulation of isotropic compressible turbulence , 2010, J. Comput. Phys..

[48]  A. Kritsuk,et al.  Dissipative structures in supersonic turbulence. , 2008, Physical review letters.

[49]  D. Donzis,et al.  Decaying compressible turbulence with thermal non-equilibrium , 2019, Physics of Fluids.

[50]  Diego Donzis,et al.  Dissipation, enstrophy and pressure statistics in turbulence simulations at high Reynolds numbers , 2012, Journal of Fluid Mechanics.

[51]  A. N. Kolmogorov Equations of turbulent motion in an incompressible fluid , 1941 .

[52]  Tongming Zhou,et al.  Reynolds number dependence of the small-scale structure of grid turbulence , 2000, Journal of Fluid Mechanics.

[53]  Robert H. Kraichnan,et al.  The structure of isotropic turbulence at very high Reynolds numbers , 1959, Journal of Fluid Mechanics.

[54]  Amir Averbuch,et al.  Asynchronous and corrected-asynchronous finite difference solutions of PDEs on MIMD multiprocessors , 1994, Numerical Algorithms.

[55]  D. Donzis,et al.  Statistically steady states of forced isotropic turbulence in thermal equilibrium and non-equilibrium , 2016, Journal of Fluid Mechanics.

[56]  P. Moin,et al.  DIRECT NUMERICAL SIMULATION: A Tool in Turbulence Research , 1998 .

[57]  Y. Kaneda,et al.  Study of High-Reynolds Number Isotropic Turbulence by Direct Numerical Simulation , 2009 .

[58]  D. Donzis,et al.  On the Relation between Small-scale Intermittency and Shocks in Turbulent Flows , 2013 .

[59]  D. Donzis,et al.  Emergence of Multiscaling in a Random-Force Stirred Fluid. , 2017, Physical review letters.

[60]  T. Gotoh,et al.  Pressure spectrum in homogeneous turbulence. , 2001, Physical review letters.

[61]  M. Petersen,et al.  Forcing for statistically stationary compressible isotropic turbulence , 2010 .

[62]  Yvonne Jaeger,et al.  Turbulence: An Introduction for Scientists and Engineers , 2015 .

[63]  Robert McDougall Kerr,et al.  Higher-order derivative correlations and the alignment of small-scale structures in isotropic numerical turbulence , 1983, Journal of Fluid Mechanics.

[64]  S. Yoffe,et al.  Onset criteria for freely decaying isotropic turbulence , 2018, Physical Review Fluids.

[65]  Eric D. Siggia,et al.  Numerical study of small-scale intermittency in three-dimensional turbulence , 1981, Journal of Fluid Mechanics.

[66]  Ravi Samtaney,et al.  Direct numerical simulation of decaying compressible turbulence and shocklet statistics , 2001 .